SCL2 cryomodule development and test results

2023. 03. 02 Youngkwon Kim

Contents

- Cryomodule development
- IHEP cryomodule test results (VT, HT)

Requirements for cryomodule

		SSR1	SSR2			
	Width	Less than 1.6 m				
Size	Length, mm	1852	4390			
	Height	Less than 3.5 m				
	THS	40 K				
Operating Temp.	Pipe lines	4.5 K or 2.05 K				
	Cavity	4.5 K	2.05 K			
	х, у	± 1 mm				
Alignment	z (beam direction)	± 1 mm				
	tilt	± 5 mrad				
Μ	agnetic shield	15 mG				
	Cavity	Less than 10 ⁻⁹ mbar at cold				
Vacuum	Vacuum vessel	Less than 10 ⁻⁵ mbar at cold				
	2.05 K	29.6 W	122.7 W			
Total thermal load	4.5 K	12.2 W	19.1 W			
1000	40 K	73.2 W	138.5 W			

Cylindrical cavity (IHEP)

- Cylindrical SSR2 cavity and dedicated coupler, tuner, cryomodule was developed by IHEP, China
- Vertical tests of cavities were done by IHEP
- Assembly of cryomodule were done by IHEP personnel at SRF test facility of RISP
- Horizontal test were done by RISP

P&ID of cryomodule

- Thermal shield cooled by GHe (SRF test facility: LN2)
- 2 reservoirs for 4.5 K and 2.05 K liquid helium
- Thermal intercepts
 - 4 K intercepts: loop thermosiphon connected with 4 K reservoir
 - 40 K intercepts: copper braid wire connected with thermal shield
- 3 cryogenic valves: 1 for cool-down and 2 for JT expansion
- Heat exchanger to pre-cool the liquid helium before expansion

Thermal & structural design

Max Deformation : 0.045939 mm

Vacuum chamber

Cavity string

Cavity string assembly in cleanroom

Cavity string

3D measurement for cavity string

Insertion of cavity string into vacuum chamber

Cryogenic pipe line assembly

- SSR1/SSR2 cryomodules by RISP are not tested yet.
- SSR2 cryomdoule by IHEP was tested.

VT results of cylindrical SSR2

HPR: 100bar, 30mm/min., 10L/min.

Baking: 120~150°C, 48hours

VT results of cylindrical SSR2

× SSR2-#006 Jacket X-ray (21.09.30)

Horizontal test

Vacuum pump for cavity

Cryogenic transfer line

RF transmission line

X-ray sensor: installed between Coupler #3 and #4

HT History

Test schedule

Time	Contents
'22. 11.14	LN2 Supply
11.17	LHe Supply
11.18	Line calibration, Q _{ext} measurement
11. 22	Cavity #6, #5, Static thermal load measurement
11. 23	Cavity #4, #3
11. 24	Cavity #2, #1, Static thermal load measurement DC bias* installation
11. 25	Interruption of LHe supply (resumed at 11.26)
11. 28	2 K pumping Static/total thermal load measurement (cavity #2)

* DC bias

- 1 kV DC voltage
- DC bias Installed before Cavity #1 test
- No MP of FPC below 10 kW

Multipacting conditioning

MP starts at 0.35 MV/m

X-ray generation by MP above ~2 MV/m

- MP band upto approximately 4.5MV/m (IHEP: 3.5 MV/m at VT)
- MP band is wide, but conditioning is possible within 2~3 hours.
- MP is sometimes reactivated.
 - → Difficult to distinguish the cause of X-ray whether by MP or FE.
 - → Difficult to check the FE turn-on E_{acc} .
 - \rightarrow MP conditioning procedure needs to be established.

Summary of HT results

Cavity	Summary	비고
#1	 Repeated quench at 3MV/m 	
#2	 7.5MV/m, (X-ray: 180 uSV/hr) but degraded after quench Repeated quench around 5.7 MV/m and 7.1MV/m Degradation after Pulse conditioning 	
#3	 Repeated quench around 2.3MV/m X-ray: 2200 uSv/hr 	
#4	 7.0MV/m reached but strong FE X-ray : 2.55e+4uSV/hr Degradation after Pulse conditioning 	
#5	 6.55Mv/m reached but strong FE X-ray: 4000 uSv/hr 	
#6	 Repeated quench around 5.1MV/m X-ray: ~300 uSv/hr 	

Repeated quench at 3MV/m

LHe level fluctuation at the time quench

Eacc(MV/m)	4	4.5	5	5.5	6	6.5	7	7.5	Quench / Eacc
11.23	11.6	150							5
		80							5
			0.7	1					5.9
									5.8
				0	0	30	70	180	7.5
			1000						5.7
			500						5.7
			500	2100					5.7
				2100					5.7
11.24				2100					5.7
				500	1600	2800	7000		7.1
			80	270	1100	2800	6000		7.1
					580	1800	6000		
						1700			
11.24 17:47 (Add DC bias)	0.5		35	170	800	2200			7.1
pulse cond.						1400			

 At 6.6MV/m, the LHe level drops rapidly even with the valve open more than 60% → Large heat load

Fluctuation of the LHe level due to repetitive quench around 2.3 MV/m.

Eacc(MV/m)	4	4.5	5	5.5	6	6.5	7
	350	1400	3100	950			
				530			
				350			
pulse cond.				250	1000	5000	17000- >23000
pulse cond.					14000		
					16000		

RF supply process of the cavity #4 and performance change according to pulse conditioning.

Cavity #5 & #6

X-ray change according to RF supply process of the Cavity #6 and repetitive quench around 5.0MV/m

Thermal load measurement at 2.05K

Static thermal load requirement: 14 W

Discussion with IHEP

- RISP
- FE was generated in all cavities and the target E_{acc} was not achieved.
 - Contamination during cavity string assembly
 - No HPR before cavity string assembly
 - No coupler conditioning before cool down
- For Cavity #1, #3, #6, quench occurs repeatedly at low field.
 - Large static thermal load for the cavities at the both end.
- Huge static thermal load (36 W)
 - No vacuum leak of vacuum chamber
 - Large conduction through the warm-to-cold transition beam pipes
 - Possibility of thermal contact between thermal shield or pipes and helium pipes

Thank you!

• Process of alignment calibration and measuring method are applied to SCL 3 cryomodules and it was verified.

Measuring cavity displacement of room and cold temperatures with micro alignment telescope

- Calibration method of cavity was confirmed in 1st prototype of HWR cryomodule B.
- Including deformation of vacuum chamber in vacuum and thermal contraction of vertical support and cavity, estimated calibration value in vertical direction is -1.21 mm.
- Measured displacement of beam port is located less then 0.29 mm of estimated displacement.
- Alignment of SSR1 cavities is easier than QWR&HWR cavities because SSR1 cavities are supported from below not hanging.

Magnetic field measurement

• Magnetic field near cavity is below 15 mG(avg. 7.6). It satisfice our requirement.

Test 1: 50 mm ~ 1250 mm, 150 mm interval

In test 1, points near top cover and tuner port (A7,10,13, B8,11,14, C9,12,15) are over 15 mG but under 27 mG(C12).

Test 2: 100 mm ~ 1400 mm, 100 mm interval

In test 2, maximum and minimum values at points near coupler port (A17~19, B18~19, C19) are 134 mG(A19) and 18 mG(C17).

* Background: 260 mG

Freq [MHz] 325 325 325 325 325 325	
	1
S21 (dB) -40.9936 -45.6779 -41.108 -40.76 -40.45 -34.27	72
S11 (dB) -7.99E-02 -5.87E-02 -7.07E-02 -8.40E-02 -7.74E-02 -8.00E	-02
S22 (dB) -1.12E+00 -9.60E-01 -1.62E+00 -1.20E+00 -1.11E+00 -1.11E+	+00
QL 6.12E+06 1.77E+06 5.70E+06 5.30E+06 5.80E+06 2.70E+	⊦07
Qt 2.68E+11 2.32E+11 2.42E+11 2.18E+11 2.24E+11 2.52E+	⊦11
BW 53 184 57 61 56 12	

$$Q_t = \frac{1}{Q_c} \left(\frac{2Q_L}{S_{21}}\right)^2$$

1. 저온유지모듈 개별 열부하

Heat load		HWR2 (1 EA)			SSR1 (23 EA)			SSR2 (23+2 EA)			Demerik
		2.05 K	4.5 K	35 – 55 K	2.05 K	4.5 K	35 – 55 K	2.05 K	4.5 K	35 – 55 K	Remark
	Static	4.5	5.0	121.0	5.0	8.1	48.8	9.2	12.7	92.3	2016.04
Without margin	Dynamic	12.8	-	-	14.7	-	-	72.6	-	-	2016.04
	Total	17.3	5.0	121.0	19.7	8.1	48.8	81.8	12.7	92.3	2016.04
With margin	Static	6.8	7.5	181.5	7.5	12.2	73.2	13.8	19.1	138.5	2016.04
	Dynamic	19.2	-	-	22.1	-	-	108.9	-	-	2016.04
	Total	26.0	7.5	181.5	29.6	12.2	73.2	122.7	19.1	138.5	2016.04

2. 저온유지모듈 전체 열부하

Heat load	P2I	DT, SCL2, and Ex	Domostr		
neat Ioau	2.05 K	4.5 K	35 – 55 K	Keniaik	
	Static	349.5	508.8	3,550.9	2016.04
Without margin	Dynamic	2,165.9	-	-	2016.04
	Total	2,515.4	508.8	3,550.9	2016.04
	Static	524.3	765.6	5,327.6	2016.04
With margin	Dynamic	3,250.0	-	-	2016.04
	Total	3,774.3	765.6	5,327.6	2016.04