PAUL SCHERRER INSTITUT

muon & neutron EDM searches at PSI

P. Schmidt-Wellenburg

Searches for electric dipole moments at PSI

Philipp Schmidt-Wellenburg (PSI) | Seminar FNAL | 05.05.2023

CP violation & edm

Complementarity of EDM searches

Philipp Schmidt-Wellenburg (PSI) |Seminar FNAL| 05.05.23

PAUL SCHERRER INSTITUT

A brief history of EDM searches

Philipp Schmidt-Wellenburg (PSI) | Maier-Leibniz Kolloquium | 28.10.2021

al., PRD80(2009)052008 al., PRL I 24(2020)08 I 803 *Bennett et Abel et a

PAUL SCHERRER INSTITUT

Sakharov criteria for baryogenesis

Use a magnetic offset field

The Ramsey technique

PAUL SCHERRER INSTITUT

The Ramsey technique

PAUL SCHERRER INSTITUT

Coupling of the spin to an electric field

Philipp Schmidt-Wellenburg (PSI) |Seminar FNAL| 05.05.23

Sensitivity for an EDM

P: Initial polarization *E*: Electric field strength *N*: Number of particles *T*: Observation time *A*: Analyzing power

Ultracold neutrons: good for $T\sqrt{N}$

PAUL SCHERRER INSTITUT Simultaneous spin detection

- o Spin dependent detection
 - Adiabatic spinflipper
 - Iron coated foil
- o ⁶Li-doped scintillator GS20

17

Sensitivity versus field drifts

• Sensitivity for many cycles ideal case:

$$\sigma(d_{\rm n}) = \frac{\hbar}{2\alpha TE\sqrt{NM}}$$

 Only if magnetic field is stable enough.
 (Good fit with orange, bad fit with purple)

PAUL SCHERRER INSTITUT

$\Delta f = \frac{4d_{\rm n}|\vec{E}| - 2\mu\Delta B_0}{h}$

Options with field changes:
 Change E-field with adequate period (e.g. every 10 cycles)

(loose time due to E ramps)

- Use a stack of two neutron precession chambers
- Use a comagnetometer

Stability and changing E-fields

Real data example (stability)

Hg EDM

False

Other effects

Systematic effects

Table I: Summary of systematic effects in 10^{-28} ecm. The first three effects are treated within the crossing-point fit and are included in d_{\times} . The additional effects below the line are considered separately.

Effect	shift	error
Error on $\langle z \rangle$	-	7
Higher order gradients \hat{G}	69	10
Transverse field correction $\langle B_{\rm T}^2 \rangle$) 0	5
Hg EDM[8]	-0.1	0.1
Local dipole fields	-	4
$v \times E$ UCN net motion	-	2
Quadratic $v \times E$	-	0.1
Uncompensated G drift	-	7.5
Mercury light shift	-	0.4
Inc. scattering ¹⁹⁹ Hg	-	7
TOTAL		

Systematic effects (no free meals)

Secondary effects cancel unless correlated with E-field.

$v \times E$ the dominant systematic

Motional magnetic field from
$$B_{\rm m} = -\frac{\nu \times E}{c^2}$$

Naively no contribution as $\bar{\nu} = 0$ for UCN?
In non-uniform B-field and E-field:
Rabi: Spin rotation due to oscillating horizontal field.
This leads to a shift (Ramsey, Bloch, Siegert) of the
resonance frequency by
 $(\gamma_n B_\perp)^2$

$$\Delta \omega = \frac{(\gamma_n B_\perp)^2}{2(\gamma_n B_0 - \omega_r)}$$

with

$$B_{\perp} = \frac{\partial B_z}{\partial z} \frac{r}{2} + \frac{v_r E}{c^2}$$

and the oscillation ω_r is a result of rapidly changing trajectories, e.g. $\omega_r = v_r/2R$

$v \times E$ the dominant systematic

Motional magnetic field from B_m = - $\frac{v \times E}{c^2}$ In non-uniform B-field and E-field:

$$B_{\perp}^{2} = \left(\frac{\partial B_{z}}{\partial z}\frac{r}{2}\right)^{2} + r\frac{\partial B_{z}}{\partial z}\frac{v_{r}E}{c^{2}} + \left(\frac{v_{r}E}{c^{2}}\right)^{2}$$

The term linear in E will lead to a electric field induced shift of precession frequency, an EDM like signal.

$$\Delta \omega_{\rm f} = r \frac{\partial B_z}{\partial z} \frac{\nu_r E}{2c^2 (\gamma_{\rm n} B_0 - \omega_r)}$$

Different for neutrons (adiabatic), and mercury (ballistic/non-adiabatic)

Philipp Schmidt-Wellen&Hta(GISt) Setziana Flohati & Standellige G. Pignol and S.

Use R-value as proxy for $G_{1,0}$

Center of mass offset
 Non-adiabaticity

$$R_{\pm} = \frac{f_{\rm n}}{f_{\rm Hg}} = \left|\frac{\gamma_{\rm n}}{\gamma_{\rm Hg}}\right| \left(1 \pm \delta_{\rm EDM} \pm \delta_{\rm EDM}^{\rm false} + \delta_{\rm Q} \left(+\delta_{\rm G}\right) + \delta_{\rm T} + \delta_{\rm E} + \delta_{\rm LS} + \delta_{\rm I} + \delta_{\rm P} + \delta_{AC}\right)$$

$$\overline{\nu_{
m Hg}} pprox 160$$
 m/s vs. $\overline{\nu_{
m UCN}} pprox 3$ m/s

$$R \cdot \left| \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \right| - 1 = \delta_{\rm G} = \pm \frac{\langle z \rangle G_{1,0}}{B_0}$$

Crossing point analysis

New Result (PSI)

Previous result (ILL), J.M. Pendlebury et al, Phys. Rev. D 92 092003 (2015)

 $d_n = (-0.2 \pm 1.5_{\text{stat}} \pm 1.0_{\text{syst}}) \times 10^{-26} \text{ ecm}$

$d_n = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \times 10^{-26} \text{ ecm}$

The new limit

n2EDM

ID 80cm double chamber ¹⁹⁹Hg co-gradiometer 104 Cesium magnetometers

 $\sigma(d_n) \sim 10^{-27} ecm$

31

Cs magnetometer Hg polarization cell Grounding shell Insulator HV electrode Ground electrode UCN shutter

Commissioning of the magnetic field

High precision magnetic field mapping using a fluxgate sensor mounted on a three axis robot.

Excellent magnetic-field uniformity

 $B_z/\mu T$

nEDM 2017 $\sigma(B_z) = 900 \text{pT}$ In the precession chamber Ø 47 cm n2EDM 2022 $\sigma(B_Z) \leq 60 \mathrm{pT}$ In the precession chamber Ø 80 cm

The collaboration

Measurement of the Permanent Electric Dipole Moment of the Neutron

C. Abel,¹ S. Afach,^{2,3} N. J. Ayres,^{1,3} C. A. Baker,⁴ G. Ban,⁵ G. Bison,² K. Bodek,⁶ V. Bondar,^{2,3,7} M. Burghoff,⁸ E. Chanel,⁹ Z. Chowdhuri,² P. Flaux,⁵ B. Franke,^{2,3,4} A. Fratangelo,⁹ P. Geltenbort,¹ M. Daum,² S. Emmenegger,³ L. Ferraris-Bouchez,¹⁰ M. Fertl[©],^{2,3,12} P. Flaux,⁵ B. Franke,^{2,3,4} A. Fratangelo,⁹ P. Geltenbort,¹ K. Green,⁴ W. C. Griffith,¹ M. van der Grinten,⁴ Z. D. Grujić⁰,^{14,15} P. G. Harris⁰, ¹ L. Hayen,^{7,e} W. Heil,¹² R. Henneck,² V. Hélaine,²⁵ N. Hild,^{2,3} Z. Hodge,⁹ M. Horras,^{2,3} P. Iaydjiev,^{4,n} S. N. Ivanov,^{4,0} M. Kasprzak,^{2,7,14} Y. Kermaidic,^{10,1} K. Kirch,^{2,3} A. Knecht,^{2,3} P. Knowles,¹⁴ H.-C. Koch,^{2,14,12} P. A. Koss,^{7,g} S. Komposch,^{2,3} A. Kozela,¹⁶ A. Kraft,^{2,12} J. Krempel,³ M. Kuźniak,^{2,6,h} B. Lauss,² T. Lefort,⁵ Y. Lemière,⁵ A. Leredde,¹⁰ P. Mohanmurthy,^{2,3} A. Mtchedlishvili,² M. Musgrave,¹⁴ O. Naviliat-Cuncic,⁵ D. Pais,^{2,3} F. M. Piegsa,⁹ E. Pierre,^{2,5,j} G. Pignol,^{10,a} C. Plonka-Spehr,¹⁷ P. N. Prashanth,⁷ G. Quéméner,⁵ M. Rawlik,^{3,k} D. Rebreyend,¹⁰ I. Rienäcker,^{2,3} D. Rise,^{2,3,17} S. Roccia,^{13,18,b} G. Rogel,^{5,1} D. Rozpedzik,⁶ A. Schnabel,⁸ P. Schmidt-Wellenburg,^{6,2,c} N. Severijns,⁷ D. Shiers,¹ R. Tavakoli Dinani,⁷ J. A. Thorne,^{1,9} R. Virot,¹⁰ J. Voigt,⁸ A. Weis,¹⁴ E. Wursten,^{7,m} G. Wyszynski,^{3,6} J. Zejma,⁶ J. Zenner,^{2,17} and G. Zsigmond²

Complementarity of EDM searches

Philipp Schmidt-Wellenburg (PSI) |Seminar FNAL| 05.05.23

PAUL SCHERRER INSTITUT

37

CP violation and hints for new physics

CP violation

- Matter/Antimatter imbalance (BAU)
- Constituencies of dark matter (axions)
- Natural in many BSM theories

Laboratory hints for NP

- Muon g-2 4.2 σ
- LFUV in B decays
- Semileptonic decays combined: $>5\sigma$

EFT analysis of contributions to F2 and F3

$$\langle p' | J_{\mu}^{\text{EM}} | p \rangle = \overline{\Psi}(p') \left[F_{1} \gamma_{\mu} + \frac{iF_{2}}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{iF_{3}}{2M} \sigma_{\mu\nu} \gamma_{5} q^{\nu} + \frac{F_{4}}{M^{2}} (q^{2} \gamma_{\mu} - \gamma^{\mu} q_{\mu} q_{\mu}) \right] \Psi(p)$$

$$\text{charge} \qquad \text{electric-dipole}$$

Effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \,\bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + \text{h.c.}$$

$$\delta F_2 = a_{\ell_i} = -\frac{2m_{\ell_i}}{e} \left(c_R^{\ell_i \ell_i} + c_R^{\ell_i \ell_i *} \right) = -\frac{4m_{\ell_i}}{e} \operatorname{Re} c_R^{\ell_i \ell_i}$$
$$F_3 = d_{\ell_i} = i \left(c_R^{\ell_i \ell_i} - c_R^{\ell_i \ell_i *} \right) = -2 \operatorname{Im} c_R^{\ell_i \ell_i},$$

General limits on μ EDM in flavor violating models

• EFT phase of Wilson parameter $c_R^{\mu\mu}$ hardly constraint

• μ EDM contribution in electron EDM allows for large value: $d_{\mu} \leq 7.5 \times 10^{-19} ecm$

A.Crivellin, M. Hoferichter, PSW PRD 98(2018) 113002

Philipp Schmidt-Wellenburg (PSI) |Seminar FNAL| 05.05.23

Search for a muEDM using the frozen spin with longitudinal injection

- μ^+ from Pion-decay \rightarrow high polarization $p \approx 95\%$
- Injection through
 - superconducting channel
- Fast scintillator triggers pulse
- Magnetic pulse stops longitudinal motion of μ^+
- Weakly focusing field for storage
- Thin electrodes provide electric field for frozen spin
- Pixelated detectors for
 - e^+ tracking

Signal: asymmetry up/downwards tracks with time

Positrons are emitted dominantly along the spin direction

$$A(t) = \frac{N_{\uparrow}(t) - N_{\downarrow}(t)}{N_{\uparrow}(t) + N_{\downarrow}(t)} = \alpha p \sin\left(\frac{2d_{\mu}}{\hbar}t\right) \approx \alpha p \frac{2d_{\mu}}{\hbar}t$$

The slope gives the sensitivity of the measurement:

$$\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2p E_{\rm f} \sqrt{N} \gamma \tau_{\mu} \alpha}$$

p := initial polarization $E_{f} := Electric field in lab$ $\sqrt{N} := number of positrons$ $\tau_{\mu} := lifetime of muon$ $\alpha := mean decay asymmetry$

- Existing solenoid at PSI, max 5T
- Bore diameters 200mm
- Field was measured in 2022 found suitable for injection

A phased approached

Phase 2 (dedicated magnet

- Large bore (up to 900 mm diameter)
- High Temporal field stability (10ppb/h)
- Excellent spatial field uniformity (< | ppb/mm)
- Philipp Schmidt-Wellenburg (PSI) |Seminar FNAL| 05.05 Page 45

The muEDM phase I on piEI

Test bed and frozen spin demonstrator

muEDM measurement $< 3 \cdot 10^{-21} ecm$

PAUL SCHERRER INSTITUT

Storage and injectic

- Strength of weakly focusing field in the center region defines "depth" of storage
- The deeper / stronger the weakly focusing field the stronger needs to be the pulse

Pulse Generator

Radial magnetic field pulse to kick muons

- Pulse width $\Delta t \approx 100 \text{ ns}$
- Delay between trigger and pulse peak $\Delta t_d pprox 100 \mathrm{ns}$
- Peak current 100A
- Eddy current damping by electrodes?

Injection and statistical sensitivity

 Large phase space at exit of beam collimated by passage through a collimation channel

 $\sigma(d_{\mu}) = \frac{\hbar \gamma a_{\mu}}{2pE_{\rm f}\sqrt{N}\,\tau_{\mu}\,\alpha}$

	$\pi E1$	$\mu E1$
Muon flux (μ^+/s)	4×10^{6}	1.2×10^8
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate $(1/s)$	2×10^3	360×10^3
Gamma factor γ	1.04	1.56
e^+ detection rate (1/s)	500	90×10^3
Detections per 200 days	8.64×10^9	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	${<}3\times10^{-21}$	$< 6 \times 10^{-2}$

Systematic studies (example)

- Systematic effects: all effects that lead to a real or apparent precession of the spin around the radial axis that are not related to the EDM
- Major sources of systematic effects in the frozen spin technique:
 - Coupling of the magnetic moment with the EM fields of the experimental setup (real)
 - Early to late variation of detection efficiency of the EDM detectors (apparent)

Will move orbit out of central plane until: $\langle B_r^* \rangle = -\langle E_v / \beta \gamma \rangle$

Systematic study - overview

- Systematic effects are studied using analytic expressions
- Comparison with GEANT4 spin tracking Monte Carlo for verification
- Deduce specifications for experiment

Next steps:

- Parametrization of magnetic-field nonuniformity
- Deduce magnetic-field requirements

Systematic effect	Constraints	Phase I	
		Expected value	Syst. (×10 ⁻²¹ e⋅cm
Cone shaped electrodes (longitudinal E-field)	Up-down asymmetry in the electrode shape	$\Delta_R < 30~\mu{\rm m}$	0.75
Electrode local smoothness (longitudinal E-field)	Local longitudinal electrode smoothness	$\delta_R < 3~\mu{\rm m}$	0.75
Residual B-field from kick	Decay time of kicker field	$<50~\mathrm{ns}$	$< 10^{-2}$
Net current flowing muon orbit area	Wiring of electronics inside the orbit	< 10 mA	$< 10^{-2}$
Early-to-late detection efficiency change	Shielding and cooling of detectors	_	
Resonant geometrical phase accumulation	Misalignment of central axes	$\begin{array}{l} {\rm Pitch} < 1 \ {\rm mrad} \\ {\rm Offset} < 2 \ {\rm mm} \end{array}$	2×10^{-2}
TOTAL			1.1

Page 54

- Magnetic pulse needs to be triggered by incident muon
- Only about 2% of muons passing through the collimation channel are within the acceptance phase space
- Scattering in scintillators increase beam divergence

• Active aperture as veto

Positron detection – figure of merit

Detection of g-2 precession ω_a

- Measurement of mean magnetic field $\langle B \rangle$
- Measure ω_a(E) to tune electric field to frozen-spin condition
 Requires momentum resolution

Detection of EDM polarization

 Measurement of Asymmetry as function of time A(t)
 Requires spatial resolution along cylinder

Silicon strip detector for g-2 detection

Silicon strip detector for g-2 detection

Reconstruction of

transverse

Scintillating fiber detector for EDM-signal

Scintillating fiber detector for EDM asymmetry measurement and timing

- Horizontal fiber ribbons with $250 \mu m$ pitch and $100 \mu m$ resolution
- Timing resolution < 2ns

PAUL SCHERRER INSTITUT

• Reconstruction of longitudinal momentum

Conclusions

- EDM are excellent probes to search for new physics
- PSI is currently preparing two experiments to improve the current best limits of the neutron and muon EDM in the next decade to better than:

$$\sigma(d_{\rm n}) \sim 1 \times 10^{-27} ecm$$

and
$$\sigma(d_{\mu}) \sim 6 \times 10^{-23} ecm$$

Shift the central value by adding an unknown offset EDM of -1.5 to 1.5E-25 ecm to the data

$$\begin{split} \delta N_{\uparrow,\downarrow;i} &= \mp \bar{N} \frac{\pi \alpha}{\Delta \nu} \frac{d \cdot E}{h} \sin \phi_i \\ \text{with} \qquad \phi_i &= \frac{(\nu_i - \nu_0)}{\Delta \nu} \pi \end{split}$$

- Keep un-blinded data in a safe place (encrypted)
- Two blinding levels
 - Primary blinding same for both analysis groups
 - Secondary blinding layer different for both groups

- One fit per subsequence: combine all E-field states SF2 ans SF1 states
- o A total of 8 fit parameters
- Parameter errors are small due to high number of **dof.**

 A_i

depends on initial and final spin flipper

4

 $A_{av(1-4)}$

αcos

Single Ramsey fit

Cycles

Remaining drifts in R required to employ an $R \vee (t, E)$ fit:

Minimize

$$(R - Ax)^{-1}C^{-1}(R - Ax)$$

with

$$Ax = \begin{bmatrix} 1 & t_1 - \langle t \rangle & E_1 \\ 1 & t_2 - \langle t \rangle & E_2 \\ \vdots & \vdots & \vdots \\ 1 & t_n - \langle t \rangle & E_3 \end{bmatrix} \begin{pmatrix} R_{\text{sub}} \\ dR/dt \\ a \end{pmatrix}.$$

From *a* we deduce the EDM for each subset:

$$d_{\rm n} = \mp a \frac{h}{\langle f_{\rm Hg} \rangle}$$

Obtain d_n from R

$$R(t) = \frac{\mathrm{d}R}{\mathrm{d}t}(t - \langle t \rangle) + E(t) \cdot a + R_{\mathrm{sub}}$$

Mapping with fluxgate

- -20<z<20,
- -10<r<30,
- $\Delta \phi = 5^{\circ}$

- Fit to order l = 7
- Extract $\langle B_T^2 \rangle$ for each base configuration
- Extract $\delta_{\rm G}(\hat{G})$ for each base configuration

04 | 002

 \leq

20 (20

 α

ACC.

Entrance trigger and storage simulation

Ongoing muEDM activities

 Characterization of potential electrode material with positrons and muons

50 MeV/c

- Systematic effects: all effects that lead to the real or apparent precession of the spin around the radial axis that are not related to the EDM
- Sources of systematic effects currently studied in analytically and in simulations
 - Imperfections in the storage ring (electric and magnetic fields, local dipoles)
 - Variation of detection efficiency of the EDM detectors
 - Non-uniformity of initial injection
 - gravity?
 - unthought-of problems

 \rightarrow Derive specifications for all features of the experiment