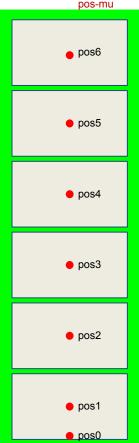
HD Supercell efficiency measurements in Liquid Argon @ Milano-Bicocca: MC computed geometric acceptance

C. Brizzolari, C. Cattadori, E. J. Cristaldo Morales, M. J. Delgado Gonzales, C. Gotti, D. Guffanti, C. Massari, <u>L. Meazza</u>, H. Souza, F. Terranova 28/02/2023



HD-XA Supercell PDE measurements & data analysis

- Available alpha-source scanning data of XA configurations:
 - HG, FE, FG (pDUNE nomenclature)
 - First PDE analysis: C. Massari master thesis.
 - Last PDE update: 25/10/2022
- NEW (done)
 - XA HD SC simulation (MiB PDE measurement setup)
 - geometric acceptance (this talk)
 - comparison between analytical and MC computation
- **NEW** (work in progress): Refinement of data analysis
 - signal calibration
 - peak finding algorithm
 - gain computation
 - wfm deconvolution by Gaus+Wiener for the muon analysis (LAr purity corrections)

Method & Data taking

z-scanning of the SC with the 241 Am α (5.480 MeV) source at the following positions:

- 1. **pos0**: (the lowest possible): ~2 cm above the flange.
- pos1, 2, 3, 4, 5, 6: the center of each dichroic filter.
 Acquired: 10⁴ x 4 wfms; 20 μs length; ~5 μs pretrigger.
- 3. Source at the topmost position (~49 cm from the flange) and ~ out of LAr:
 - one μ run (10⁴ x 4 events; 20 μ s, 5 μ s pretrigger)
 - one **s.ph.e. run** (10^4 x 8 events; 20 µs length; 1.6 µs pretrigger)

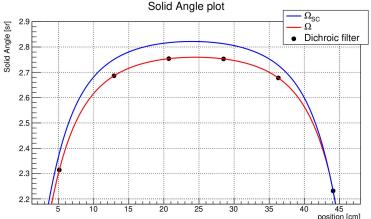
Source-to-dichroic filter distance: (55 +/- 1) mm.

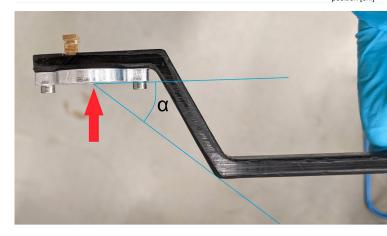
Noise Run: $V_{bias} = V_{bd}$ -IV for FFT and filter shape&cutoff definition

Solid angle: analytical computation

Calculated analytically as the angle of the vertex of a pyramid with a rectangular base (the SC)

$$\Omega_{SC}(x) = 2 \arctan\left(\frac{abh}{2R_1(x^2 + h^2) + 2R_2[x(x - b) + h^2]}\right) + 2 \arctan\left(\frac{abh}{2R_1(x(x - b) + h^2) + 2R_2[(x - b)^2 + h^2]}\right)$$

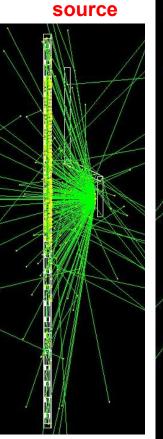

The source holder covers part of the solid angle

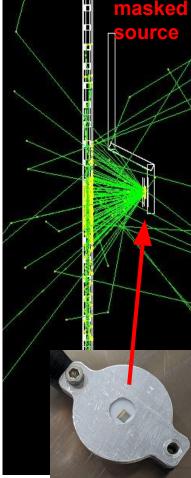

$$\Omega_{s}(x) = 2 \arctan \left(\frac{wh(b-x-h\cot\alpha)}{2R_{3}[h\cot\alpha(b-x)+h^{2}] + 2R_{4}[(h\cot\alpha)^{2}+h^{2}]} \right) +$$

$$+ 2 \arctan \left(\frac{wh(b-x-h\cot\alpha)}{2R_{3}[(b-x)^{2}+h^{2}] + 2R_{4}[h\cot\alpha(b-x)+h^{2}]} \right)$$

The solid angle is thus:

$$\Omega(x) = \begin{cases} \Omega_{\text{SC}}(x) - \Omega_s(x) & \text{if } x < b - h \cot \alpha \\ \Omega_{\text{SC}}(x) & \text{if } x \ge b - h \cot \alpha \end{cases}$$

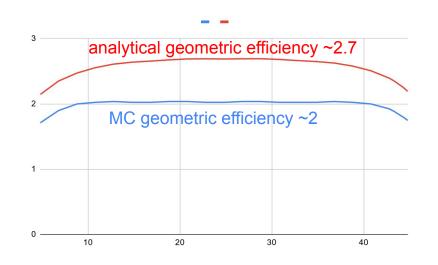




MC computed geometric acceptance

- computed via a geant4 simulation
 - geometry takes into account also the source holder and teflon mask (previously only the source holder arm was modeled)
 - solid angle obtained from the ratio of photons hitting the pTP deposit over the scintillation photons

unmasked


MC computed geometric acceptance

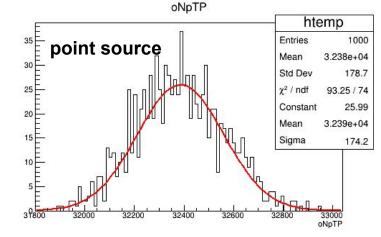
the MC result is lower than the analytical computation with the same configuration (holder arm only)

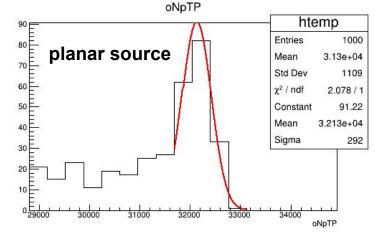
position	MC sim	analytical
4th dichroic	2.43	2.69

- possible difference in the geometry
- effects from absorption and scattering in IAr
- adding source geometry, holder and teflon mask, the geometric acceptance decreases from a peak of 2.7 steradiants to 2

MC geometric acceptance correction

• preliminary: all data must be reanalyzed

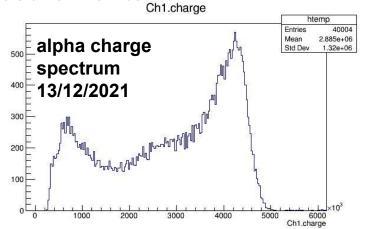

		OV	PDE	Uncorre cted $\pmb{\varepsilon}_{XA}$	Measur ed Xtalk	P _{LAr}	Position systematic	Corrected $\boldsymbol{\varepsilon}_{\text{XA x talk only}}$	Corrected \$\mathcal{\varepsilon}_{\text{XA x talk and}}\$ P_LAr	Corrected geometric acceptanc e (MC)
this work	HPK** & G2P	3.0V	50%	1.94 (0.03)	6.62%	TBD	0.08	1.82 (0.08)		2.5 (0.16)
	FBK*** & G2P	4.5V	45%	1.72 (0.03)	15.7%	1.06	0.10	1.49 (0.10)	1.58 (0.10)	2.1 (0.23)
	FBK*** & Eljen	4.5V	45%	1.50 (0.02)	15.7%	TBD	0.06	1.29 (0.07)		1.8 (0.18)
JINST work	HPK commercial*	2.7V	45%	3.5 (0.1)	22%			2.9 (0.1)		

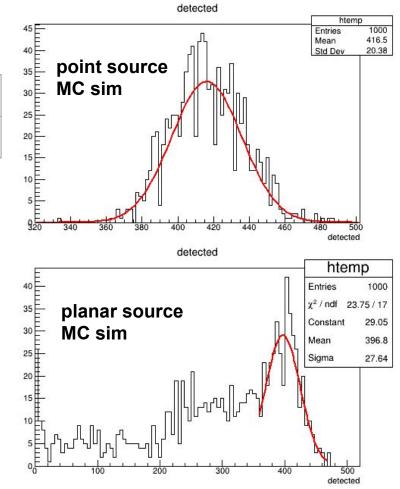

Point source vs Planar source

The geometric acceptance has been computed simulating:

- first a point-like source
 - faster to run
- then a planar source (~5mm diameter) → a low energy tail shows up and the peak mean is found ~4% lower
 - simulations can be re-run to take this effect into account

source	point-like	planar	planar/point
peak mean	3.238e+04	3.13e+4	96.6%





Point source vs Planar source

source	point-like	planar	planar/point
peak mean	417	397	95.2%

 the detected photons spectrum shape is similar to the one from measurements

