Multiple Coulomb scattering for exiting μ tracks 03/28/23 <u>Amir Gruber</u> | Tel Aviv University | MicroBooNE

Key points

- We're interested in reconstructing momentum for exiting tracks
- Multiple Coulomb scattering based measurements get ${\sim}10\%$ bias for certain p ranges
- We tried applying the standard MCS calculation algorithm to segments of tracks in a way that will minimize bias
- Unfortunately,
 - Minimized bias leads to too large resolution
 - "Tuned" results did not result in true optimization as a function p_{True}
- We observed some interesting properties of MCS calculationbased momentum reconstruction

Measuring p_{μ} **using Multiple Coulomb scattering**

- While muons traverse a medium, they are scattered off nuclei
- Standard deviation of a muon's scattering angle given a muon's momentum p can be derived using a tuned Highland formula:

$$\sigma_0^{RMS} = \sqrt{\left(\frac{\kappa(p)}{p\beta c}\right)^2 + (\sigma_0^{res})^2}$$

Where $\kappa(p)$ is a tuning function for Highland's formula (see MCS paper for details)

Measuring p_{μ} using Multiple Coulomb scattering

• While muons traverse a medium, they are scattered off nuclei

Measuring p_{μ} using Multiple Coulomb scattering

- Reconstructed tracks are divided to segments of constant length (14 cm, Ar interaction length)
- Scattering angles between consecutive segments are measured
- Likelihood that the particle has a specific momentum is calculated for a range of momenta
- Momentum with maximum likelihood is chosen to be the MCScomputed momentum

Event selection

- Based on ν CC inclusive filter
- |PDG ID| = 13, ν PDG ID = 14
- Forward going tracks
- p_{MCS} at $0 10 \ GeV/c$
- Effective track > 20 cm (Part of track used for p_{MCS} calculation)
- v and daughters' start contained
- $\nu \text{ score} > 40$
- IsMuonCandidate:
 - fGeneration = 2
 - μ cut track score > 0.85
 - Vertex distance < 5 cm
 - $\chi^2_{\mu} < 30, \chi^2_p > 60$

•
$$\frac{\chi_p^2}{\chi_\mu^2} > 7$$

Removing constant part of tracks

MCS-Based Fractional Bias - Uncontained μ Tracks

In order to minimize $\frac{p_{MCS}-p_{True}}{p_{True}}$ (fractional bias), we removed the last segments of tracks before applying the standard MCS calculation to the shortened tracks

MCS calculation by effective track length variation

- Momentum was reconstructed by taking first part of tracks with varying length – effective track lengths of 50 to 250 cm
- After reconstruction, for each track length range we chose the effective track length that had minimal absolute mean bias in that range

Bias by effective track length for different length ranges

Bias by effective track length for different length ranges

- Decreasing monotonic trends as a function of:
 - Effective track length
 - Reconstructed track length
- Bias converges (but not to zero)
- "Bumps" occur every 14 cm – maximal segment length in the MCS algorithm

Results as a function of reconstructed track length (100 - 350 cm)

Bias for uncontained µ tracks

Optimal effective track length for uncontained µ tracks

TEL AVIV UNIVERSITY

Modified calculation by true momentum

0.6 (p_{MCS}-p_{True})/p_{True} Standard - Modified 0.4 0.2 0 -0.2 -0.4 -0.6 p_{True} [GeV/c] 0.4 0.6 0.8 1.2 Plotted values are for tracks with 100 - 350 cmreconstructed length

Bias for uncontained μ tracks

Bias by effective track length for different p_{μ} ranges

Results as a function of MCS momentum $(0.4 - 1.4 \ GeV/c)$

Modified calculation (by p_{MCS} binning) by true momentum

Bias for uncontained μ tracks

Summary & Conclusions

- We tried using a modified p_{MCS} calculation to minimize fractional bias
- The bias was minimized at the expense of resolution (that's expected)
- Tuned results by track length, $p_{\rm MCS}$ did not result in better results as a function of $p_{\rm True}$
- We observe significant monotonic trends in bias as a function of:
 - Effective track length
 - Full reconstructed length
 - Reconstructed p_{MCS}

Other ideas

- Ideas we explored:
 - Removing ends of tracks where space charge effects are dominant (accounting for parts within the fiducial volume)
 - Varying the MCS segments length (not just 14 cm)
 - Adding $\frac{dE}{dx}$ info to the calculation
- Other suggestions?

