MAPS for (next) HEP tracking

Introduction and disclaimer

P. Giubilato, Padova University and INFN, CERN

Monolithic are well known

Difference is shrinking – 1 µm pitch possible

M7 AI via 7 Cu ISP M8 Cu/ CIS M6 Cu DBI ISP M8 Cu D 7-4 SiO 3.1 µm ICISILD 5-4 SiO CIS M6 Cu 0.59 µm wafer bonding interface Ta-based liner 1µm M5 Cu M4 Cu HFW 2 µm 3/11/2016 det WD IMX260_CIS P1AS1 Chipworks ERGhts TLD 4.9 mm 5.29 µm 19:33 PM

Sony direct bonding (Cu Cu) 1st gen P. Giubilato – 06 March 2023 FNAL

DOI: 10.1109/EDTM.2019.8731186.

IMEC hybrid bonding

And more can be add...

Sony 3-stacked imager (IX400, 2017)

Sony 2nd TSV (2015)

Samsung TSV (2016)

Samsung butted TSV

Sony 3 layer (2017)

Sony 1st DBI (2018)

Unfortunately, not yet there for large area sensor

Ongoing R&D Mostly ITS3

Vertexing – 280 mm long sensors, self sustaining

Vertexing – material budget advantage

Material budget – foreseen ALICE ITS3

Vertexing – improved performance by material reduction

3 Cylindrical layers

- Made with 6 curved wafer-scale single-die
- Monolithic Active Pixel Sensors
- Radii 18/24/30 mm, length 27 cm
- Thinned down to <50 μm

Position resolution ~5 μ m

- Pixels Q(<mark>20 μm</mark>)
- No flexible circuits in the active area
- Distribute supply and transfer data on chip to the short edge

Bending – improving jigs and connections

Bending – sensors work (ONGOING R&D)

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale $(10^{-1} \text{ to } 10^{-5})$ to show fully efficient rows. Each data point corresponds to at least 8k tracks.

Stitching – single piece, 280 mm long sensor

Stitching: "easy on paper" but requires substantial R&D:

- design methodology is new: needs to be learned and exercised
- yield is crucial: ways of dealing with imperfections need to be built in
- power consumption/voltage drops become significant (scales quadratically with chip size)

MOSS and MOST address the stitching in two complementary ways

- MOSS is a more conservative repetition of sensor blocks, being generous in the line spacing and circuit density to avoid shorts
- MOST relies on a very fine-grained way of turning off malfunctioning parts instead

Stitching – MOSS prototype (due 2nd quarter 2023)

P. Giubilato – 06 March 2023 FNAL

18 µm pitch

Stitching – design strategy

Stitched design

Design reticle

Monolithic requires some tweaking

Standard process (left): difficult to make the depletion layer extend from the junction around the small collection electrode laterally

Modified process: the deep low-dose n-type implant creates a planar junction under the existing implants, so that the depletion starts at the junction, making full depletion easier

Further modifications to increase charge collection speed

Additional gap in the deep n-implant helps making the E-field stronger at the sides

Extra p-implant improves field strength at sides as well

Speed and radiation tolerance are both improved

Integration

Wafer scale sensor and minimal support structure

Carbon foam

- Duocel Foam ERG (longerons)
 - *ρ* = 70 kg/m³
 - K = 0.05 W/(m*K)
- ALLCOMP LD Foam (rings)
 - ρ = 200 kg/m³
 - K = 20 W/(m*K)

3-layer vertex prototype

P. Giubilato – 0910 prototope FNAL

Geometry and stability improvements

Air cooling test mock-up

ALICE

Serpentine simulating power dissipation over the sensor area: up to 6 mW cm⁻²

> At periphery, power dissipation higher than in the matrix: up to 3.6 W cm⁻²

> > FR4 to simulate the layers

Air cooling measurements

ALICE

MATRIX max temperature variation [C]

Airflow optimization necessary

Airflow optimization - results

Air cooling – what's next

New optimized manifold 3 3D printed prototype under test

Carbon paper lamellar radiator

Next step Getting closer

From current ALICE to a VERY compact detector

A large area tracker

Improving ITS3 5 μ m vertex point resolution to 2.5 μ m or better...

Requires a radical design of the first 3 layers

- 3 layers within beam pipe (in secondary vacuum) radii of 5 - 25 mm, with following specs:
- wafer-sized, bent MAPS
 1 ‰ X₀ per layer
 ITS3 tech
- σ_{pos} ~2.5 $\mu m \rightarrow$
 - 10 µm pixel pitch
 - 100 MHz cm⁻² rate
 - < 50 mW cm⁻² power

P. Giubilato – 06 Marcho2answehAL

Foreseen operational figures*

Layer	Radii	Flux		Bandwidth [Gb s ⁻¹]			Power	Radiation	
	Cm	[MHz cm ⁻²]	[GHz lyr ⁻¹]	Hits	Noise	Total	[W]	NIEL [1 Mev n _{eq} cm ⁻²]	TID [Mrad]
0	0.5	96	17	274	1.0	275	13	9×10 ¹⁵	288
1	1.2	16	7.3	117	2.4	119	32	1.6×10 ¹⁵	50
2	2.5	3.8	3.6	57	5.0	62	66	3.6×10 ¹⁴	12
3	3.8	1,7	1.8	28	0.7	79	175	1.6×10 ¹⁴	5
4	7	0.48	1.2	18	1.4	43	131	4.6×10 ¹³	1.5
5	12	0.16	0.8	13	2.4	27	224	1.6×10 ¹³	0.5
6	20	0.058	0.6	9.9	4.0	19	374	5.6×10 ¹²	0.2
7	30	0.026	0.5	7.9	6.0	16	561	2.5×10 ¹²	0.08
8	45	0.012	0.6	9.6	19.1	33	1792	1.1×10 ¹²	0.04
9	60	6.5 × 10 ⁻³	0.5	8.2	25.5	36	2389	6.3×10 ¹¹	0.02
10	80	3.7 × 10 ⁻³	0.4	6.8	34.0	42	3185	3.5×10 ¹¹	0.01

bandwidth: 16 bit/hit, single pixel clusters

• radiation load: 50 months of 24 MHz pp interactions

• Fake-hit rate: 10⁻⁸ px⁻¹ event⁻¹ @ 40 MHz readout rate 36

Foreseen operational figures*

ltem	Unit	Nex	t ITS	ITS3	ITS2
	Cm	Vertex	Tracker		
Pixel pitch [µm]	[µm]	<mark>9</mark> ÷ O(10×10)	28 ÷ O(50×50)	O(20×20)	28
Spatial resolution [µm]	[µm]	<mark>2</mark> ÷ 2.5	2 ÷ 10	5	5
Time resolution [ns]	[ns]	10 ÷ 100	10 ÷ 100	100 ÷ O(1000)	O(1000)
Shaping time [ns]	[ns]	25 ÷ 200	25 ÷ 200	200 ÷ O(5000)	O(5000)
Fake hit rate	[px ⁻¹ event ⁻¹]	< 10 ⁻⁸	< 10 ⁻⁸	< 10 ⁻⁷	<< 10 ⁻⁶
Power consumption	[mW cm ⁻²]	70 (+75%)	20	20 (matrix)	30 ÷ 40
Hit flux	[MHz cm ⁻²]	20 ÷ 94		8.5	5
NIEL	[1 MeV n _{eq} cm ⁻²]	1×10 ¹⁶		3×10 ¹²	3×10 ¹²
TID	[Mrad]	300 ÷ 1000	5	0.3	0.3

• In red: likely not achievable (no idea at the moment)

- In yellow: not strictly necessary, more a goal
- In blue: more realistic, expected goal

65 nm proven technology – 10¹⁵ 1 MeV n_{eq} cm⁻² measureents

- Proven by R&D53 (ATLAS CMS)
- Comparable results in Tower-Jazz 65 nm

65 nm proven technology – 10 Mrad measurements

- Proven by R&D53 (ATLAS CMS)
- Comparable results in Tower-Jazz 65 nm

Power consumption and distribution likely the BIGGEST issues

Consumption

Biggest contributors:

- Front-end circuits: use maximum **possible pixel** size (enters quadratically)
 - optimise the charge collection carefully
 - optimisation of the time resolution
- On-chip data transmission (see dedicated slide)

 Status: – No comparable chip available, differ in terms of pixel size, hit rate capabilities, time resolution,...

Distribution

Vertex Detector

- Stitched chip of 25 cm length (chip split in zdirection) and 1 cm width*
- 70 mW cm⁻² power consumption
- On-chip metal layers for power distribution
- Aluminium, O(1µm) thick
- 20% / 2 mm width used for supply 0.5 Ω /cm * 25 cm = 13 0
- Chip operating at 1 V Average current along a 1 cm wide, 25 cm long chip: 0.9 A
- 3 V voltage drop

Power consumption multiplied!

Outer Tracker

- Parallel powering of chips low voltages, high currents
- sub-optimal in terms of material budget and space 40

Power distribution alternatives

Serial powering

- Current reduction of roughly a factor of 10
- Complicated to realize with stitching: substrate is acting as common reference (unless depletion zones separate the domains)
- safer option use separate chips instead of stitching

Status:

 in use for ATLAS and CMS LS3 tracker upgrades

R&D need:

- LDO shunt regulator
- Prototyping of a module using existing MAPS

Redistribution Layer (RDL)

- Additional copper and polyamide layer(s) added to the wafer
- Trade off between resistance and material budget
- Impacts the flexibility

R&D need:

- Prototyping of RDL assemblies
- Study of the mechanical properties (i.e. bending and thermal cycles) of RDL assemblies

Do not get crazy on small pixels

An insight on actual binary pixel resolution

DOI: 10.48550/arXiv.1711.00590

An insight on actual binary pixel resolution

DOI: 10.48550/arXiv.1711.00590

An insight on actual binary pixel resolution

DOI: 10.48550/arXiv.1711.00590

Bot x and y position resolution are actually better than the classical $1/\sqrt{12}$ assumption

45

Timing also possible

ARCADIA sensor for timing R&D

Fully Depleted CMOS Sensors:

- Monolithic sensors
- Charge collected mainly by drift:
 - Fast collection time (\simeq ns)
 - Better collection efficiency
 - Higher radiation tolerance
- n-on-n sensor concept
- A p+ boron-doped region at the backside of the n-substrate
- n-doped and p-doped wells for CMOS electronics
- 110 nm Technology (Lfoundry), 6 metal layers
- Only deep pwell as a custom implant
- Vback , negative bias, to the p+ contact to start full depletion
- Thickness from 50 μm to about 400 μm

ARCADIA sensor for timing – expected performance Stefano Durando

Sensor simulations:
TCAD, Electric Field & Weighting Potential evaluation, ALLPix2, Pixels

- Monte Carlo analysis
- Pitches: 50 10 μm
- Thicknesses: 25 35 50 μm \rightarrow Resolution is 20+30 ps for the 50 μm pitch
- Larger PAD sizes allow for a better field uniformity and better area efficiency
- Thinner sensors have a better time resolution
- Still, less charge is generated
- Increase in the electronics jitter
- Gain into the monolithic sensor?

ARCADIA sensor for timing – optimal pixel size

Stefano Durando

P. Giubilato – 06 March 2023 FNAL

50 μm thick sensor - G. Andrini, C. Ferrero

49

ARCADIA sensor for timing – process modification

Stefano Durando

A gain layer can be added with minimal modifications to the process

• With this approach, the sensor should be biased at HV positive bias on the top side of the sensor to increase the gain

Drawbacks:

- Sensor biasing
- AC coupling with the electronics

Simulations :

- Estimation of the dose profile
- Prediction of the impact ionization

ARCADIA sensor for timing – process modification submitted

Outlook

