WR technology

23rd March 2023

Fermilab Workshop

23rd March 2023

01 | General considerations

02 | Phase measurement

03 | Protocol explanation

3 Application Engineering / SED Spain / 23/03/2023

01

General considerations

Time reference

Atomic clocks count time relying on the resonance frequency of atoms excited by microwave, optical or ultraviolet radiation

- They are one of the most stable time references available
- The most widespread atomic clocks are based on cesium or rubidium

Any GPS receiver gets an accurate time, traceable to the atomic clocks present inside GPS satellites, as it is necessary to calculate the receiver position

• GPS-synchronized time receivers just ignore the position information and adjust a local tunable oscillator according to the data obtained from the satellites

5 Application Engineering / SED Spain / 23/03/2023

Ethernet consideration

- The use of fiber makes encoding easier, as the optical medium does not suffer from crosstalk or electric interference
- 1.25 Gbps serial data stream comes out of the serializer
- Fully deterministic physical layer
 - New FPGA family require complex configuration to support the new serializer and remove any source of uncertainty

Optical Gigabit Ethernet low level encoding

- Encapsulation of Ethernet frames in the PCS: preambles, start/end, idle pattern, other control sequences
- There must always be some pattern in the medium
- After PCS, data is fed to an 8B/10B encoder: no more than 5 subsequent equal bits, no DC component, comma symbols
- 1.25 Gbps serial datastream comes out of the serializer
- To maximize measurement accuracy, packet timestamping is done by the PCS module

7 Application Engineering / SED Spain / 23/03/2023

- In a regular Ethernet network, every node uses its own free running oscillator. Small differences
 of frequency between tx and rx circuits are compensated by asynchronous packet buffers (not
 deterministic/supported by WR)
- Sync-E defines a hierarchical structure where the master at the top is connected to a primary clock
- STM syntonizes its oscillator to the primary clock and uses this frequency to encode the data
- At the receiver end, the same frequency is recovered using PLLs and it is used with lower nodes in the hierarchy and back to the master

8 Application Engineering / SED Spain / 23/03/2023

02

Phase measurement

Phase measurement

- Ethernet packets can be received at a device at any moment
- The 125 MHz transmission clock only provides 8 ns granularity
- Phase offset measurements improve the accuracy of PTP timestamp exchanges
- How can we add this sub-clock cycle timestamp capability?

- First approach when measuring phase difference:
 - A digital counter? Frequency needed would be too high (+10 GHz for subns accuracy!)
- The Dual Mixer Time Difference is a more convenient way of measuring phase differences between two signals if they are synthonous.
- For the sake of simplicity, we will have a look at the analog version of the system:
 - a(t) can be our local oscillator clock
 - b(t) is the reference we get from the master through the Rx Ethernet path
 - An intermediate frequency offset is used to shift the frequency spectrum

DMTD phase detector

11 Application Engineering / SED Spain / 23/03/2023

- Comprised of a local oscillator, two identical mixers and low-pass filters and a time interval counter
- Two clocks (a(t), b(t)) of the same frequency (fclk) and arbitrary phases (Φa, Φb) as inputs
- The local oscillator must have a frequency offset very close to fclk
- Multiplication of input signals with the local oscillator is:

$$a(t) \cdot c(t) = \cos(2\pi t f_{clk} + \phi_a) \cdot \cos(2\pi t f_{offset} + \phi_{offset})$$

$$= \frac{1}{2} \cos(2\pi t (f_{clk} + f_{offset}) + \phi_a + \phi_{offset})$$

$$+ \frac{1}{2} \cos(2\pi t (f_{clk} - f_{offset}) + \phi_a - \phi_{offset})$$

PF-filtered

$$DF-filtered$$

$$mixers filters a(t) - c(t)$$

$$a(t) = \cos(2\pi f_{clk} + \phi_a)$$

$$b(t) = \cos(2\pi f_{offset} + \phi_{offset})$$

$$b(t) = \cos(2\pi f_{clk} t + \phi_b)$$

1

DMTD phase detector

12 Application Engineering / SED Spain / 23/03/2023

At the end of the filters, we have:

- cos(2πt(fclk foffset) + Φa Φoffset) / 2
- cos(2πt(fclk foffset) + Φb Φoffset)
- The phase difference between the clocks is unaltered

Suppose fclk=125 MHz and offset=124.99 MHz

• The phase shift can be easily measured from a 10 kHz output signal (100 us period) can be measured using an affordable counter with a 10 ns clock period

- f_{PLL} generated from input clocks with a frequency few kHz away from received frequency
- The replacement of the mixed with the D-type flip-flop generate glitches due to setup/hold violation: deglitching filter is required prior counting cycles to determine the phase differences

White-Rabbit has developed a digital version of this system (Digital DMTD or DDMTD) Low pass filtering is implemented using D-type flip-flop

14 Application Engineering / SED Spain / 23/03/2023 This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

- The Soft PLL performs the syntonization of the local reference clock to the RX clock received from the data stream
- The firmware module contains the minimum functionalities and most of the control loop implementation is in the SW
- Here are defined the Digital DMTDs to obtain the phase differences between clocks
- The Soft PLL module uses two external VCXO oscillators tuned by DACs

DMTD phase detector: SoftPLL implementation

15 Application Engineering / SED Spain / 23/03/2023

Input:

- frequency f_{in} [Hz]
- phase φ_{in} [rad]

• Output:

- proportional lower frequency f_{out} [Hz]
- equal phase: ϕ_{in} [rad]= ϕ_{out} [rad]

Zooming effect:

• $x_{in}[ns] = 1/(1+2^N) \cdot x_{out}[ns]$

DMTD phase detector: SoftPLL implementation

16 Application Engineering / SED Spain / 23/03/2023 This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

03

Protocol explanation

WR: Timing protocol

- 🗧 Link up
- Syntonize
- 🔰 Calibrate PHYs
- Measure coarse delay
- 🔰 Measure phase
- Extend timestamps and obtain fine delay
- Determine link asymmetry
- Compute one-way delays and clock offset
- Initial offset correction
- ≱ Measure phase
- Compensate for delay changes

WR protocol: Link detection and syntonization

Sy	nchronization phase	Purpose	Measurements done
	Link up	Wait until Ethernet link is established	
	Syntonize	Slave clock reflects master clock with unknown offset	
Initial synchronization	Calibrate PHYs	Use calibration pattern to determine PHY TX/RX latencies	$\Delta_{txm}, \Delta_{rxm}, \Delta_{txs}, \Delta_{rxs}$
	Measure coarse delay	Use PTP message exchange to determing the coarse round-trip delay	$t_1, t_2, t_3, t_4, one_way_delay$
	Measure phase	Use DMTD phase detector to determine the phase of loop-backed clock	phase _{MM}
	Extend timestamps and obtain fine delay	Extend the precision of PTP timestamps using DMTD phase measurement. Recalculate round-trip delay	$t_{2P},t_{4P},delay_{MM}$
	Determine link asymmetry	Calculate the asymmetry of the fiber	$\delta_{\rm f}$
	Compute one-way delays and clock offset	Calculate precise one-way delays and master-to-slave clock offset	$\delta_{ms}, \delta_{sm}, offset_{MS}$
	Initial offset correction	Fix the offset to synchronize the slave	
acking			
	Measure phase (offset)	Measure $offset_{MS}$ again	offset _{MS}
Phase tr	Compensate for delay changes	Determine the difference between subsequent offset_{\rm MS} samples and update slave clock accordingly	3

- Initially, the link between master and slave is not established
- Their PHYs send the idle pattern but they do not receive any meaningful data
- When they align the symbols and receive the idle pattern, the Ethernet link will become active
- Following an active link, master sends ANNOUNCE messages and eventually the slave will answer with a SLAVE_PRESENT
- When the master sends a LOCK message, the slave will start to recover the clock from the data stream
- Once the PLL is locked, the slave issues a LOCKED message and both nodes are syntonized (same frequency, different phase)

19 Application Engineering / SED Spain / 23/03/2023

WR protocol: Link delay measurement

Sy	nchronization phase	Purpose	Measurements done
	Link up	Wait until Ethernet link is established	
	Syntonize	Slave clock reflects master clock with unknown offset	
	Calibrate PHYs	Use calibration pattern to determine PHY TX/RX latencies	$\Delta_{txm}, \Delta_{rxm}, \Delta_{txs}, \Delta_{rxs}$
	Measure coarse delay	Use PTP message exchange to determing the coarse round-trip delay	$t_1, t_2, t_3, t_4, one_way_delay$
ы	+		
izati	Measure phase	Use DMTD phase detector to determine the phase of loop-backed clock	phase _{MM}
Initial synchron	Extend timestamps and obtain fine delay	Extend the precision of PTP timestamps using DMTD phase measurement. Recalculate round-trip delay	$t_{2P},t_{4P},delay_{MM}$
	Determine link asymmetry	Calculate the asymmetry of the fiber	$\delta_{\rm f}$
	Compute one-way delays and clock offset	Calculate precise one-way delays and master-to-slave clock offset	$\delta_{ms}, \delta_{sm}, offset_{MS}$
	Initial offset correction	Fix the offset to synchronize the slave	
acking			
	Measure phase (offset)	Measure offset _{MS} again	offset _{MS}
Phase th	Compensate for delay changes	Determine the difference between subsequent offset _{MS} samples and update slave clock accordingly	3

 Once syntonized, we still have to synchronize both nodes. This can be divided into two tasks:

- Coarse delay measurement, based on a PTP exchange
- **Precise** delay measurement that combines the coarse delay with a DDMTD phase measurement

20 Application Engineering / SED Spain / 23/03/2023

WR protocol: Coarse delay measurement

Synchronization phase		Purpose	Measurements done
	Link up	Wait until Ethernet link is established	
	Syntonize	Slave clock reflects master clock with unknown offset	
Initial synchronizat on	Calibrate PHYs	Use calibration pattern to determine PHY TX/RX latencies	$\Delta_{txm}, \Delta_{rxm}, \Delta_{txs}, \Delta_{rxs}$
	Measure coarse delay	Use PTP message exchange to determing the coarse round-trip delay	t ₁ , t ₂ , t ₃ , t ₄ , one_way_delay
	↓ Measure phase	Use DMTD phase detector to determine the phase of loop-backed clock	phase _{MM}
	Extend timestamps and obtain fine delay	Extend the precision of PTP timestamps using DMTD phase measurement. Recalculate round-trip delay	$t_{2P},t_{4P},delay_{MM}$
	Determine link asymmetry	Calculate the asymmetry of the fiber	$\delta_{\rm f}$
	Compute one-way delays and clock offset	Calculate precise one-way delays and master-to-slave clock offset	$\delta_{ms}, \delta_{sm}, offset_{MS}$
	Initial offset correction	Fix the offset to synchronize the slave	
D			
rackii	Measure phase (offset)	Measure offset _{MS} again	offset _{MS}
Phase t	Compensate for delay changes	Determine the difference between subsequent offset _{MS} samples and update slave clock accordingly	3

- The coarse delay is measured using a PTPv2 two-step packet exchange
- The packets timestamps are hardwaregenerated
- This measurement produces timestamp values: t₁, t₂, t₃, t₄
- Due to the possibility of jitter-related problems, t₂ and t₄ timestamps are generated for both rising and falling edge

21 Application Engineering / SED Spain / 23/03/2023

WR protocol: Fine delay measurement

Synchronization phase		Purpose	Measurements done
	Link up	Wait until Ethernet link is established	
	Syntonize	Slave clock reflects master clock with unknown offset	
nitial synchronization	Calibrate PHYs	Use calibration pattern to determine PHY TX/RX latencies	$\Delta_{\rm txm}, \Delta_{\rm rxm}, \Delta_{\rm txs}, \Delta_{\rm rxs}$
	Measure coarse delay	Use PTP message exchange to determing the coarse round-trip delay	$t_1, t_2, t_3, t_4, \textit{one_way_delay}$
	Measure phase	Use DMTD phase detector to determine the phase of loop-backed clock	phase _{MM}
	Extend timestamps and obtain fine delay	Extend the precision of PTP timestamps using DMTD phase measurement. Recalculate round-trip delay	$t_{2P}, t_{4P}, delay_{MM}$
	+		1
	Determine link asymmetry	Calculate the asymmetry of the fiber	$\delta_{\rm f}$
	Compute one-way delays and clock offset	Calculate precise one-way delays and master-to-slave clock offset	$\delta_{ms}, \delta_{sm}, offset_{MS}$
	Initial offset correction	Fix the offset to synchronize the slave	
bu	+		
racki	Measure phase (offset)	Measure offset _{MS} again	offset _{MS}
Phase t	Compensate for delay changes	Determine the difference between subsequent offset _{MS} samples and update slave clock accordingly	3

• At this point we have:

- t₁, t₂, t₃, t₄ PTP timestamps
- phase_{MM} round-trip phase-shift
- phase_s slave setpoint
- The precision of the timestamps is extended to include the DDMTD measurements: t_{2p}, t_{4p} (not needed for t₁ & t₂ because transmission always use the device reference clock – phase = 0)
- An algorithm decides whether the rising edge or falling edge timestamps are the reliable ones
- Some magic: because clocks are syntonized, phase relationship are constant and therefore they can be integrated many times (hundreds) to improve accuracy in the phase values
 - Note that Start-of-Frame (SoF) signals share a sub-cycle timestamp offset equal to the inter-frequency phase offset (and therefore timestamps can be improved using the corresponding DDMTD phase measurements) for correction

22 Application Engineering / SED Spain / 23/03/2023

WR protocol: Fine delay measurement

- At this point we have:
 - t₁, t₂, t₃, t₄ PTP timestamps
 - phase_{MM} round-trip phase-shift
 - phase_s slave setpoint
- The precision of the timestamps is extended to include the DDMTD measurements: t_{2p}, t_{4p}
- An algorithm decides whether the rising edge or falling edge timestamps are the reliable ones
- And precise round-trip delay can be calculated as
 - delay_{MM} = ($t_{4p} t_1$) ($t_3 t_{2p}$)
- More advanced: Φ_{trans} is a constant parameter for a given device
- $\Phi = phase_{MM} \Phi_{trans}$

23 Application Engineering / SED Spain / 23/03/2023

WR protocol: Link asymmetry

- The asymmetry cannot be directly measured. It can only be estimated from delay_{MM} and knowledge of the medium and the transmission circuits
- All these asymmetry sources are taken into account:
 - Propagation delays of electronic components and PCB traces
 - Optical transceivers delay asymmetry
 - Fiber Rx/Tx different diffraction index
 - Internals of the chips structure
- Fiber asymmetry can be variable depending on operating conditions and link length. All the rest are considered constant per device

24 Application Engineering / SED Spain / 23/03/2023

WR protocol: Link asymmetry

Circuit asymmetries

- Different length in traces
- Different structure of internal clock distribution
- Different paths in FPGA logic

Solutions:

- Measure them in lab and consider them to be constant
- Develop a model that characterizes asymmetries depending on conditions
- Reduce asymmetries as much as possible in design stage

Fiber asymmetries

- Chromatic dispersion due to different wavelengths used
- Characterized by α parameter

Transceivers asymmetry

- Serializers/De-serializers introduce a random latency between the recovered clock and the data stream
- Solution: disabling the automatic comma alignment and manual bit-shifting

25 | Application Engineering / SED Spain / 23/03/2023

WR protocol: Computing one-way delay and offset

Synchronization phase		Purpose	Measurements done
	Link up	Wait until Ethernet link is established	
	Syntonize	Slave clock reflects master clock with unknown offset	
	Calibrate PHYs	Use calibration pattern to determine PHY TX/RX latencies	$\Delta_{\rm txm}, \Delta_{\rm rxm}, \Delta_{\rm txs}, \Delta_{\rm rxs}$
	Measure coarse delay	Use PTP message exchange to determing the coarse round-trip delay	$t_1, t_2, t_3, t_4, one_way_delay$
iization	Measure phase	Use DMTD phase detector to determine the phase of loop-backed clock	phase _{MM}
Initial synchron	Extend timestamps and obtain fine delay	Extend the precision of PTP timestamps using DMTD phase measurement. Recalculate round-trip delay	$t_{2P}, t_{4P}, delay_{MM}$
	Determine link asymmetry	Calculate the asymmetry of the fiber	$\delta_{\rm f}$
	Compute one-way delays and clock offset	Calculate precise one-way delays and master-to-slave clock offset	$\delta_{ms}, \delta_{sm}, offset_{MS}$
	Initial offset correction	Fix the offset to synchronize the slave	
B			
rackii	Measure phase (offset)	${\sf Measure \ offset}_{\sf MS} {\sf again}$	offset _{MS}
Phase t	Compensate for delay changes	Determine the difference between subsequent offset _{MS} samples and update slave clock accordingly	3

- $\Delta = \Delta_{\text{txm}} + \Delta_{\text{rxm}} + \Delta_{\text{txs}} + \Delta_{\text{rxs}}$
- $delay_{MM} = \Delta + \delta_{ms} + \delta_{sm}$
- α = (δ_{ms} / δ_{sm}) 1
- We obtain one-way fiber delay δ_{ms} from these equations as:
 - $\delta_{ms} = (1+\alpha)(delay_{MM}-\Delta) / (2+\alpha)$
- and adding the asymmetric delays gives the final products:
 - $delay_{ms} = (1+\alpha)(delay_{MM}-\Delta) / (2+\alpha) + \Delta_{txm} + \Delta_{rxs})$
 - $offset_{ms} = t_1 t_{2p} delay_{ms}$

26 Application Engineering / SED Spain / 23/03/2023

WR protocol: Initial offset correction and phase tracking

Sy	nchronization phase	Purpose	Measurements done
	Link up	Wait until Ethernet link is established	
	Syntonize	Slave clock reflects master clock with unknown offset	
/nchronization	Calibrate PHYs	Use calibration pattern to determine PHY TX/RX latencies	$\Delta_{\rm txm}, \Delta_{\rm rxm}, \Delta_{\rm txs}, \Delta_{\rm rxs}$
	Measure coarse delay	Use PTP message exchange to determing the coarse round-trip delay	$t_1, t_2, t_3, t_4, one_way_de$
	Measure phase	Use DMTD phase detector to determine the phase of loop-backed clock	phase _{MM}
	↓ Extend timestamps and obtain fine delay	Extend the precision of PTP timestamps using DMTD phase measurement. Recalculate round-trip delay	$t_{2P}, t_{4P}, delay_{MM}$
Initial s	Determine link asymmetry	Calculate the asymmetry of the fiber	$\delta_{\rm f}$
	Compute one-way delays and clock offset	Calculate precise one-way delays and master-to-slave clock offset	$\delta_{ms}, \delta_{sm}, offset_{MS}$
	Initial offset correction	Fix the offset to synchronize the slave]
0			1
ackin	¥ Measure phase (offset)	Measure offset _{MS} again	offset _{MS}
Phase tr	Compensate for delay changes	Determine the difference between subsequent offset _{MS} samples and update slave clock accordingly	6

- $delay_{ms} = (1+\alpha)(delay_{MM}-\Delta) / (2+\alpha) + \Delta_{txm +} \Delta_{rxs})$
- offset_{ms} = $t_1 t_{2p} delay_{ms}$
- The second's counter is increased/decreased with the integer part of offset_{MS}
- *delay* The counter used to generate PPS signal is corrected with the remainder of offset_{MS} (in full 8-ns cycles)
 - The phase_s value is corrected with the picoseconds remainder
 - Once synchronized, the packet exchange is repeated periodically. offset_{ms} is updated and the little phase changes are corrected
 - PROBLEM: experimental errors on determining the contributions of α and Δ may significantly impact links calibration
 - The error in α is multiplied by the distance of the link. This is not a problem with small distances, but it is for large ones

27 Application Engineering / SED Spain / 23/03/2023

WR protocol: Synchronization stages summary

 The offset corrections are made on the UTC and nanosecond counter by the PPSGen and on the reference VCO by the SoftPLL

28 Application Engineering / SED Spain / 23/03/2023

WR protocol: Equations summary

•
$$delay_{MM} = (t_{4p} - t_1) - (t_3 - t_{2p})$$

- $\Delta = \Delta_{txm} + \Delta_{rxm} + \Delta_{txs} + \Delta_{rxs}$
- $delay_{MM} = \Delta + \delta_{ms} + \delta_{sm}$
- $\alpha = (\delta_{ms} / \delta_{sm}) 1$
- $\delta_{ms} = (1+\alpha)(delay_{MM}-\Delta) / (2+\alpha)$
- $delay_{ms} = (1+\alpha)(delay_{MM}-\Delta) / (2+\alpha)$ • $+ \Delta_{txm} + \Delta_{rxs})$ • $offset_{ms} = t_1 - t_{2p} - delay_{ms}$

29 Application Engineering / SED Spain / 23/03/2023

POWERED BY TRUST

30 Application Engineering / SED Spain / 23/03/2023

