Precision Timing System MiniWorkshop

HEP LLRF

29/03/2023

Juan Fernández juan.fernandez@nav-timing.safrangroup.com

Pilar Gil pilar.gil@nav-timing.safrangroup.com

SAFRAN

High Energy Physics (HEP) department

Team areas of expertise:

- Ultra-stable low-noise RF electronics
- Customized or standard crates (Compact PCI-e Serial, uTCA or standalone solutions).
- Real-time embedded system based on the latest FPGAs and SoCs.
- Individualized Control system Solutions based on EPICS frameworks (EPICS, TANGO).
- RF distribution.
- High reliable and real-time diagnosis and postmortem analysis.
- Fast data acquisition systems. Adaptive Fast-control systems.

Radiofrequency control, monitoring, timing system and services

Products:

- LLRF Precise Low Level RF generators
- BPMs Beam Position Monitors
- Timing systems Precise triggers generation
- RF generation and distribution
- Software & Services

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

0000000000000000

Timing System

Generation of synchronized triggers and gate signals Configurable rates, widths and periods Resolution below 10ps Output jitter about 100ps WR compatible

Goal: 15ps output jitter 5ps resolution

3 HEP / Safran: Navigation & Timing / 29/03/2023

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Curs1 Pos

-4.6655ns

Curs2 Pos -4.6145ns

Cursor Source

Math |

°1 °2

°3 °4

Cursor Type T 5

n

150ps peak to peak jitter 26ps rms jitter

6 HEP / Safran: Navigation & Timing / 29/03/2023

7 HEP / Safran: Navigation & Timing / 29/03/2023

Safran's LLRF capabilities

Chassis and backplanes: CPCI, UTCA, standalone Frequency range: up to 1.5 GHz Master Reference: External (MO) & White Rabbit (10MHz) FPGA families: From Virtex 6 to Zyng Ultrascale (MPSoc) CPU: External CPU & System on Chip (SoC)

Data acquisition architecture:

Direct sampling & intermediate frequency Control system: EPICS & TANGO

8 HEP / Safran: Navigation & Timing / 29/03/2023

- Amplitude/Phase Stability 0.3% - 0.3 degree
- Amplitude/Phase precision

0.03% - 0.03 degree < 1us

182fs

Continuous and Pulse mode Feedforward Frequency shifting Frequency tracking (digital PLL) Fast output interlock system (Machine protection)

٠

- NATIVE-R2 uTCA.4 from N.A.T. (up to 5 LLRF boards - AMC + RTM)
- NAT-MCH-PHYS80
- NAT-MCH-RTMCOMex-E3
- Timing gating and triggers:
 - 4 x shared bidirectional

backplane lines

4 x point-to-point backplane
 lines

LLRF Front-End (LFE) board

- RTM with double height and mid-size form factor
 uTCA.4
- 1 x RF MO Ref.: 176 MHz sine wave for LLRF reference
- 7 x RF inputs to monitor up to two cavities
- 2 x RF outputs to drive up to two cavities
- Direct sampling architecture
- RF input power dynamic range: [-60,+10] dBm
- Maximum RF output power: +10dBm
- Fail-safe for overheating mode
- EEPROM memory

LLRF AMC board

- 8 x ADC channels
- 2 x DAC channels
- 16 bits, 250MSPS ADCs QDR LVDS interface
- 16 bits, 1.5 GSPS DACs DDR LVDS interface
- Zynq UltraScale+ FPGA from Xilinx
- PLL for low phase noise distribution clocks
- **8GB DDR4** for processor and data storage (postmortem analysis)
- ETH & SFP port (White Rabbit compatible)
- uTCA MMC controller
- Fail-safe for overheating mode
- uSD socket, uUSB port

Software/Gateware integration

HEP / Safran: Navigation & Timing / 29/03/2023 13

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Rcv Ack

Warn Ack

LLRF gateware architecture

- Direct sampling architecture
- Amplitude and phase loop controller in pulsed and continuous wave
- Feedforward for beam loading compensation
- VSWR (arcing/reflection) detection and handling events
- Pulse shaping feature for smoothing RF pulses
- Provides information for step tuner motors

HEP / Safran: Navigation & Timing / 29/03/2023

14

- Fast output interlock system (Machine protection)
- Real time monitoring of RF signals (incident, reflected, cavity field...)
- **Postmortem up to 0.2 us resolution** with selectable event triggers and configurable capture parameters. MATLAB, python, CSS/BOY libraries for post processing
- RF output frequency shift +/- 1MHz
- Digital PLL for tracking resonance frequency
- EPICS control system support and easy user interface
- White-Rabbit and IEEE-1588 protocols.

15 | HEP / Safran: Navigation & Timing / 29/03/2023

LLRF Performance results – Low jitter addition at the outputs

Jitter signal generator: RMS 112 fsec

Jitter signal generator: RMS 182 fsec

Additive Jitter: RMS 70 fsec Integration band: 1Hz - 1MHz

16 HEP / Safran: Navigation & Timing / 29/03/2023

LLRF Performance results – PI delay

The duration of the steps produced by the effect of Kp determine the **total loop delay** of the system from RF-in to RF-out (**delay < 1us**)

17 HEP / Safran: Navigation & Timing / 29/03/2023

LLRF Performance results – PI for amplitude and phase regulation

In pink, RF gate signal In yellow RF output In blue UCav

A high Q filter is used to emulate the cavity behaviour. The PI controller keep constant the cavity field

18 HEP / Safran: Navigation & Timing / 29/03/2023

LLRF Performance results - PI for amplitude and phase regulation

Stability in phase **0.022°** Stability in amplitude **0.042%**

19 HEP / Safran: Navigation & Timing / 29/03/2023

LLRF Performance results – Feedforward feature

In blue RF gate signal In yellow beam presence gate In Pink RF output

Configurable gain and phase used to compensate the beam loading

LLRF Performance results – PLL capability

Phase Stability

Charaterization of a cavity filter using the PLL capability

- In blue, characterization by changing frequency shift in open PLL loop
- In red, characterization by changing Phase Offset in closed PLL loop

Achieved phase stability in tests with the superconducting HWRs: ~0.006 deg [RMS]

BPM Beam Position Monitoring

- Dynamic range: [-75, 0] dBm
- Position precision < 25um
- Phase precision < 0.1°
- Position, phase and current alarms with response time < 2us:
 - Position precision < 250u
 - Phase precision < 1°
- Electronic and cables autocalibration
 - Continuous and pulsed measuring of the beam position, phase, and current.
 - Measures at the fundamental and the first harmonic.
 - Programmable analog attenuation stage for signal level conditioning prior to digitalization.
 - Configurable averaging level in two stages to smooth the measures.
 - Analog outputs for mapping the measures (amplitude, position, phase, current) to an analog signal in the range from 0 to 10V.
 - Autocalibration capabilities (electronics and cables).
 - EPICS control system support and easy user

22 | HEP / Safran: Navigation & Timing / 29/03/2023

BPM Beam Position Monitoring

BFE (BPM Front-End) board

- SMA connectors:
 - 1 RF input for Fref: 176
 MHz sine wave for BPM
 reference
 - 2 BPM channels (4 x RF inputs per channel) Amplitude range [-70, 0] dBm
 - 4 x Analog outputs (0 to 10 V)
- I2C RF switches to allow Channel and Cable calibration
- Temperature sensor
- EEPROM memory

ADC board (AMC digitizer controller)

- 5 x Analog to digital converters (ADC)
- Zynq UltraScale+ FPGA
 from Xilinx
- PLL to generate internal clock signals
- 8GB DDR4 memory for processor and data storage (postmortem analysis)
- uTCA MMC stamp
- Temperature sensor
- uSD socket, uUSB port
- ETH & SFP port (White Rabbit compatible)
- 7 x configurable input/output TTL connectors

BPM Beam Position Monitoring

- The BPM ports act as RF emitters
- Generation of an RF pilot signal of 16dBm
- Switching logic in the BFE board to manage the transmission and reception of the RF signals
- Low coupling levels → 60dB attenuation

BPM Beam Position Monitoring – Performance results

GUI:

- Parameters configuration
- Variables reading
- System operation

Interlocks status

Detects the occurrence of interlocks with nanosecond precision!

27 | HEP / Safran: Navigation & Timing / 29/03/2023

Real time data representation

Short beam pulse detection during commissioning

29 | HEP / Safran: Navigation & Timing / 29/03/2023

POWERED BY TRUST

30 Department / Company / Date (menu "Insert / Header and footer" – "Insertion / En-tête et pied de page") This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

