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Neutrino Oscillations

M. Scott 3

What do we know (PDG ‘22)?

• θ23 = 47.2º ± 1.3º

• θ13 = 8.5º ± 0.1º

• θ12 = 33.6º ± 0.8º

• |Δm2
32| = (2.536 ± 0.03) x 10-3 eV2c-4

• Δm2
21 = (7.53 ± 0.18) x 10-5 eV2c-4

What don’t we know?

• Is θ23 == 45º (octant)?

• Is Δm2
32 > 0 (mass ordering)?

• Do neutrinos violate CP-

symmetry?

• New physics?



• Leading order oscillation 

probabilities for νμ survival 

and νe appearance
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• Need to sample spectrum at 

different values of L/E

• Build two detectors

• One close to neutrino source

• Other at maximal oscillation

Long-baseline neutrino experiments
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Electron (anti)neutrino appearance
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Image by A. Himmel / NOvA
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Tokyo

Tokai

Kamioka

Near detectors
Super-Kamiokande (SK)

JPARC

Tokai to Kamioka Experiment – T2K



Near detectors

INGRID

• Measure direction 

of neutrino beam

• Ensure stable 

beam operation 

(intensity, shape, 

direction)

• Tune neutrino flux 

prediction
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ND280

• Measure neutrino flux and cross 

section before oscillation

• UA1 magnet allows separation of 

neutrino and antineutrinos

• Oscillation analysis focuses on 

muon (anti-)neutrino samples



Super-Kamiokande
• 40,000 tons of ultra pure water

• 11,000 photo-multiplier tubes (PMTs)

• 1km overburden

• Separate electrons and muons by 

ring shape

– Mis-ID <1%

– No sign selection
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Off-axis beams

• Two-body pion decay

– Angle and energy of 

neutrino directly linked

• Moving off axis:

– Lower peak energy

– Smaller high energy tail

– Less energy spread

• T2K is at 2.5° off-axis
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Flux and cross-section modelling

• T2K uses NEUT, 47 cross-section parameters in 2022 analysis

• Flux uncertainty binned as function of neutrino type, beam mode 

and energy
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ND280 event samples

• Select highest momentum, 

muon-like, negative (positive) 

track as neutrino (antineutrino) 

candidate

• Count the number of tagged 

charged or neutral pions

11

CC-0π sample

CC-1π+ sample

CC-Other 
sample



Near detector analysis
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INGRID + 
Beam 

monitor data

NA61 data

External 
cross section 

data

Flux 
model

Cross 
section 
model

ND280 detector 
model

ND280 
data

Parametrised 
model

Data

ND280 fit

• Fit parametrized models to near detector data

– Two separate analysis, Markov Chain MC and Minimisation, Bayesian 

and Frequentist methods



Near detector analysis
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Flux 
model

Cross 
section 
model

ND280 detector 
model

ND280 
data

Parametrised 
model

Data

ND280 fit

• Produces tuned flux and cross-section models

• Use models to predict unoscillated event rate at Super-K



Near detector fit
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• Charged-current, zero-pion sample shown below

– Prefit on left, postfit on right

• MC about 10% too low prior to fit



Near detector parameter results
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• Tuned muon neutrino flux at 

Super-K shown right, some 

CCQE cross-section parameters 

below

– Prior in red, fit result in black



Event rate uncertainty
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• Correlate neutrino 

flux (first 5 bins in 

this partial matrix) 

with neutrino cross 

section 

• Reduces event rate 

uncertainty at SK

• Mis-modeling of 

cross section (flux) 

can impact flux 

(cross-section) 

parameters



Near detector p-value
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• Great, 74% probability of producing the 

observed data given our initial model!

• Ah, near detector systematics have a 

6% probability, need some more work 

in future

• Oh no! Cross-section model has 1% 

probability of giving this data…



Near detector p-value
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• Great, 74% probability of producing the 

observed data given our initial model!

• Ah, near detector systematics have a 

6% probability, need some more work 

in future

• Oh no! Cross-section model has 1% 

probability of giving this data…

– Largely from pull on MaQE, 

MaRES and CA5

• But the postfit model agrees 

reasonably with the data

0.3Post fit



Far detector analysis
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Flux 
model

Cross 
section 
model

Parametrised 
model

Data

• Apply oscillation parameters to prediction from tuned models

• Fit to data, marginalizing over nuisance parameters

– MaCh3 does combined fit of ND + FD, but in principle is ~same process

SK data

Oscillation fit
SK detector 

model
Oscillation 
parameters



Far detector prediction and data

M. Scott 20

• CC-1π sample only in neutrino beam mode

• Use Michel electron tag to locate pion – below Cherenkov threshold



Effect of near detector fit on SK prediction

M. Scott 21

• Far detector single ring, muon-like sample on left, single ring 

electron-like sample on right

• ND280 fit result (red) increases predicted event rate, changes 

shape of spectrum and reduces systematic uncertainty



T2K systematic errors
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• Uncertainty on predicted SK event rate after ND280 fit

– Flux and cross-section uncertainties are correlated so the combination 

gives a smaller uncertainty than the individual parts



T2K systematic errors (2020)
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• Final column is “CP-violating” systematic error

– Nucleon removal energy discussed later, fixed in 2022 analysis

– ND constrained rate error can be reduced

– Electron neutrino cross-section more difficult to reduce – target for next gen

– Disappearance parameters also a leading error term

PhysRevD.103.112008



Robustness checks
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Neutrino cross section model uncertainty

M. Scott 25

• World data is 

imprecise below ~10 

GeV neutrino energy

• Multiple, plausible 

models exist, 

however:

– T2K analysis 

based on a single 

model

G. Zeller, PDG Neutrino Cross Sections 2019



Simulated data studies
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• Use information about simulated interactions to produce mock 

data based on a different neutrino interaction model

– Detailed description can be found here: 

https://arxiv.org/pdf/2303.03222.pdf

• Pass mock data through near and far detector fitters

– Tune nominal interaction model to try and match mock data 

model

– Extract oscillation parameter contours and compare to our 

expectation

– Use results to add additional uncertainties to oscillation 

contours from real data fit

https://arxiv.org/pdf/2303.03222.pdf


• Energy required to liberate 

nucleon from nucleus 

depends on the nuclear model

– Global Relativistic Fermi 

Gas (RFG)

– Local RFG

– Spectral function

– Etc.

• Simulate differences and 

model by shifting lepton 

momentum

– Introduces energy bias 

(<3%) to SK reconstruction
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Example from 2020: Nucleon Removal Energy

PhysRevD.103.112008
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Nucleon Removal Energy at ND280

PhysRevD.103.112008



M. Scott 29

Nucleon Removal Energy results

• See large shift in best fit point for sin2𝜃23 and |Δ𝑚32
2 |

• Look at shift in centre of 1𝜎 allowed region and compare to size of 

systematic uncertainty

• Also check whether the change in the 𝛿𝐶𝑃 likelihood surface would 

alter outcome of 𝛿𝐶𝑃 exclusion

PhysRevD.103.112008
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Simulated data studies in 2022

• Removal energy treatment 

improved for 2022 analysis

• Model uncertainties can be 

>50% of current systematics 

budget

• For DUNE and HK systematic 

and statistical error will be 

smaller

– Impact of model 

uncertainties will grow
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A note on NOvA

• Functionally identical near and far detector

• Neutrino interaction model and beam flux uncertainties 

significantly reduced

• Detector response/reconstruction more important

https://arxiv.org/pdf/2108.08219.pdf



Looking towards future near detectors
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What does a near detector need to do?
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• Need to predict unoscillated event rate at far detector with minimal bias and 

maximum precision

𝑁𝑜𝑏𝑠 = Φ 𝐸𝜈 , 𝜈, 𝜽 × 𝜎 𝐸𝜈 , 𝜈 × 𝜖 Detector, 𝐸𝜈 , 𝜎 × 𝑃𝜈𝑥→𝜈𝑦 𝜽
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• Need to predict unoscillated event rate at far detector with minimal bias and 

maximum precision

𝑁𝑜𝑏𝑠 = Φ 𝐸𝜈 , 𝜈, 𝜽 × 𝜎 𝐸𝜈 , 𝜈 × 𝜖 Detector, 𝐸𝜈 , 𝜎 × 𝑃𝜈𝑥→𝜈𝑦 𝜽



What does a near detector need to do?
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• Need to predict unoscillated event rate at far detector with minimal bias and 

maximum precision

𝑁𝑜𝑏𝑠 = Φ 𝐸𝜈 , 𝜈, 𝜽 × 𝜎 𝐸𝜈 , 𝜈 × 𝜖 Detector, 𝐸𝜈 , 𝜎 × 𝑃𝜈𝑥→𝜈𝑦 𝜽

• Consider how you measure neutrino energy, ability to understand neutrino 

interaction models, efficiency and phase space compared to the far detector



Phase space issues – example from T2K
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• SK uses Michel electron tag to locate pion – below Cherenkov threshold

• Rate hard to constrain at ND since CC-1Pi sample largely composed of pions 

above 400MeV/c (i.e. above Cherenkov threshold)

– Large model uncertainty from pion-nucleus interactions

Single electron-like ring with a Michel electron



Different approaches
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• Functionally identical detectors (NOvA)

– Minimise efficiency phase space 

differences

– Same energy reconstruction as FD 

(?)

• “Better” detectors (T2K)

– GArTPC has lower tracking 

threshold

– Larger phase space, can correct to 

FD

– More information to allow model 

discrimination

• “PRISM” – who even needs a model 

anyway?

– Of course it still needs a model…



My view on near detectors
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• Need to measure shape of neutrino beam, direction and intensity

– Identical detector(s) that take data from the centre of the beam to 

periphery 

– PRISM works for this

• Measurements will be limited by systematics, not statistics

– Larger FD, higher beam power, longer exposure will have limited returns

• How much do you gain by running for an extra year; cost of beam vs cost of 

near detector?

– ND does not need more events, but better events

• No single approach can provide all the answers – do all of them!

– GArTPC to differentiate between interaction models

– LArTPC to perform near-far extrapolation

– PRISM to ensure results are without bias



My view on future experiments
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• DUNE and Hyper-K may be last accelerator-based long-baseline neutrino 

experiments

– Imperative that we maximise physics from these experiments

– Joint analysis required

• More open discussion between collaborations, in particular discussion of 

ongoing T2K+NOvA joint analysis, essential

• Should consider building GAr/LAr detector at J-PARC and carbon/water 

detector at Fermilab

– PRISM to test energy dependence, can have ~identical detector spanning 

neutrino energies from ~400 MeV up to ~few GeV

– Better still, 𝜈STORM with argon and water detectors to really measure 

interactions to <1% level
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Backup Slides



Neutrino interactions

• Three principal types of 

neutrino interaction

• Occur as both charged 

current (CC) and neutral 

current processes

M. Scott 41

Quasi-elastic (CCQE)

Single pion production Deep inelastic scattering / Multi-pion production

Long-baseline neutrino oscillations in Japan

10th June 2021



TPC 1 TPC 2 TPC 3

FGD 1 FGD 2

μ-

CC-0π

ND280 data

M. Scott 42

μ-

π+
CC-1π

μ-

CC- Other

• Three principal types of 

neutrino interaction

• Occur as both charged 

current (CC) and neutral 

current processes

Long-baseline neutrino oscillations in Japan

10th June 2021
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Beam stability

• INGRID and muon monitors measure beam centre position

• Very stable neutrino beam over full run



Neutrino beams

• Proton beam collides with fixed target to 

produce charged mesons

• Focus positive or negative mesons to 

produce neutrino-dominated or 

antineutrino-dominated beam

• Wait for pions to decay into neutrinos

M. Scott 44

Long-baseline neutrino oscillations in Japan

10th June 2021



T2K flux model
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• Parametrised in neutrino energy and 

flavour

• Parameter uncertainties calculated by 

varying underlying systematics

• Performed simultaneously for near and 

far detector

• Correlates near and far flux parameters

Long-baseline neutrino oscillations in Japan

10th June 2021



Super-Kamiokande detector
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• Assume nucleon at rest – 2-body process

• Can calculate neutrino energy from 

observed muon kinematics

Long-baseline neutrino oscillations in Japan

10th June 2021

• Signal in far detector:

• Measure rate of muon-like and 

electron-like events

• CCQE interactions are 'golden' 

channel



SK event selection – 0π samples
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Long-baseline neutrino oscillations in Japan

10th June 2021

Look for fully contained, single ring events inside SK fiducial volume, then:

●Visible energy > 100 MeV

●Reconstructed energy < 1250 MeV

●Not identified as π0

●No decay electrons

If electron-like ring:

●Reconstructed momentum
 > 200 MeV/c

●At most 1 decay electron

If muon-like ring:



SK event selection – e-like single pion sample
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Long-baseline neutrino oscillations in Japan

10th June 2021

Look for fully contained, single ring events inside SK fiducial volume, then:

●Visible energy > 100 MeV

●Reconstructed energy < 1250 MeV

●Not identified as π0

●One decay electrons

If electron-like ring:



Example: 2p-2h events

M. Scott 49

• Lepton kinematics give 

energy

• Extra protons below detector 

threshold – missed energy

• If we get the model wrong

– Biased energy 

reconstruction

– Incorrect relationship 

between reconstructed 

and true neutrino energy

Long-baseline neutrino oscillations in Japan

10th June 2021



2p-2h event reconstruction
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• Biased energy affects oscillation measurements

• Multiple possible models – Martini and Nieves are two examples

– Different predicted rates for neutrinos and anti-neutrinos

– ‘CP-violating’ uncertainty

Long-baseline neutrino oscillations in Japan

10th June 2021



The Martini 2p2h simulated data study

• Model applied to ND280 nominal MC prediction

• FGD1 CC0π sample shown

M. Scott 51

Long-baseline neutrino oscillations in Japan

10th June 2021



The Martini 2p2h simulated data study

• Model applied to ND280 nominal MC prediction

• FGD1 CC0π sample shown

• Increase in normalization with larger increase at larger neutrino 

energies

M. Scott 52

Long-baseline neutrino oscillations in Japan

10th June 2021



PRISM concept

• Measure neutrino 

interactions at 

multiple off-axis 

positions

• Neutrino flux 

changes with 

position

M. Scott, UK HEP Forum 2019 53



PRISM benefits - 2

DUNE-PRISM and E61

23rd October 2018

+0.8

-0.8

-0.2

• Same detector measuring 

all off-axis fluxes

• Can weight and combine 

different off-axis ‘slices’

M. Scott, UK HEP Forum 2019 54



PRISM benefits - 2
• Same detector measuring 

all off-axis fluxes

• Can weight and combine 

different off-axis ‘slices’

• Produce Gaussian energy 

distribution

DUNE-PRISM and E61

23rd October 2018

+0.8

-0.8

-0.2

M. Scott, UK HEP Forum 2019 55



PRISM benefits - 2
• Same detector measuring 

all off-axis fluxes

• Can weight and combine 

different off-axis ‘slices’

• Produce Gaussian energy 

distribution

• Measure at a known energy

• Map out true-reco relationship

• Energy range determined by off-axis range

M. Scott, UK HEP Forum 2019 56

True 

energy

Reconstructed 

energy



PRISM benefits - 3

DUNE-PRISM and E61

23rd October 2018

-0.8

+1.0

+0.2

• Can have different linear 

combination

M. Scott, UK HEP Forum 2019 57



PRISM benefits - 3

DUNE-PRISM and E61

23rd October 2018

-0.8

+1.0

+0.2

• Can have different linear 

combination

• Recreate oscillated flux 

using near detector data

sin2θ23 = 0.5
Δm2

32 = 2.41x10-3

M. Scott, UK HEP Forum 2019 58



PRISM benefits - 3

• Use data to directly predict oscillated 

spectrum (red)

• Backgrounds (green) can be measured in-situ

• Oscillation analysis minimally dependent on 

neutrino interaction model

• Can have different linear 

combination

• Recreate oscillated flux 

using near detector data

sin2θ23 = 0.5
Δm2

32 = 2.41x10-3

E61

M. Scott, UK HEP Forum 2019 59



PRISM benefits - 4

• Fit ND νe flux

– Directly measure electron/muon 

cross-section ratio

• Sterile neutrino searches

– >5σ exclusion of LSND

– Oscillation vs off-axis angle

M. Scott, UK HEP Forum 2019 60
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