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Introduction

e Our main goal is to try and enable an optical readout in ND-GAr, which
would give us access to the T, information of the interactions

* This could improve track matching with ND-LAr, neutron/gamma
identification via ToF, and open the possibility of doing very low-energy
physics (like hyperons) and BSM.
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The role of gas mixtures in TPCs

There are several reasons why we want a mixture and not just a pure
noble gas
— It reduces longitudinal and transversal diffusion

— ltincreases drift velocity
— It quenches VUV-photons and prevents destabilization of the avalanche-process due to
photoelectric effect

However, finding a scintillating mixture that provides all those benefits
while keeping the target Argon-pure is not obvious. Possible candidate: CF,
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Why CF,?

« Somegood general properties

— Transverse diffusion (at 1% mixing) of less than 1.6 mm/mY/2, better than Alice (2.2), T2K
(2.7) or baseline ND-GAr (from 3.1at 2% CH, to 1.8 at 10% CH, )

— No attachment at working drift fields (40 V/(cm-bar))

— At 1% of CF, the mass fraction is below the one of the P10 gas (Argon 90% CH, 10%)
— Highlyinert and compatible with getters

— It scintillatesin the UV and visible bands so latter can be detected using commercial
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Previous results

Yield measurements were done in our lab with an 21Am source in the range of
400-700 nm and 250-400 nm

We have found a gas mixture, Ar- CF, at 1%, which allows for the optical readout
to be implemented while keeping the target nearly Argon-pure

Geant4 simulations show that an energy threshold of 5 MeV and O(1ns) time
tagging can be achieved through a SiPM plane at the cathode
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Objectives

* Nevertheless, there were no measurements of the spectral components of
the primary scintillation in Ar- CF,

* Our objective was to measure the S1 scintillation spectrum from Ar- CF,
mixtures at low concentrations (0.1-10%) and different pressures using

and x-ray tube



Experimental setup

* Asmall chamber was built with a thin
aluminum entrance window, an aluminum
foil as cathode and an anode were we
collected the current

* We collected the light with a CCD
spectrometer after the gas was irradiated
with an x-ray tube

* The system had an RGA for purity control
and the main impurities found were water,
nitrogen and oxygen

CF63 cube

3em 575cm

lcm . ima
X-ray source N >u COHIanng
H ens
’[ ] = Fiber

2 Mesh / Cr

Thin X-ray

window Foil coated

window CCD spectrometer
cathode window




Experimental setup

Measurements were taken at no field and at a field high enough to ensure current
saturation. Different tube intensities, pressures and mixtures were explored

All results are proportional to the number of photons detected divided by the
saturation current and the W, value for each mixture

We see no signs of space charge or recombination effects, as expected based on
ionization density considerations
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Results for pure gases

The main bands come from transitions in CF,**, CF;”, argon’s third

continuum and its atomic decays

Peaks from impurities in the chamber come from OH and N,
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Peak analysis

In general, the impurity peaks tend to decrease with pressure and CF4
concentration

Theyield of the differentargon infrared peaks decreases with pressure

This behavior is consistent with self-quenching, be it either 2-body or 3-body
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Band analysis

The visible band seems to indicate the presence of an optimum

The interplay of argon’s third continuum and the UV scintillation of CF, causes the
appearance of a minimum
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Model and data comparison

 Akinetic model was developed where we compute the scintillation probabilities of
different states of interest, namely CF,**(C), CF;"(1E",2A2") and an effective state
representing the precursors of argon’s third continuum
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Model and data comparison

A global fit to the data for each band was performed using a kinetic model
with 4 free parameters -2 for the UV bands and 2 for the VIS bands-, resulting

in a reduced chi-square of 1.5

Good agreement was found for both UV and VIS bands
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Summary and conclusions

* Recently, we measured the primary scintillation spectrum for different Ar- CF,
mixtures and pressures, including pure Argon and pure CF,, with an x-ray tube

* Based on our most up-to-date results, including simulations and experiments, a
mixture of Ar- CF, at 1% is adequate for a future detector like NDGAr operated
with optical readout
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Fin

Thanks for your attention!



Appendix



Electric field uniformity

* A numerical simulation was run in COMSOL to check the field uniformity
inside the chamber

* We were limited to a 1cm diameter window from the x-rays tube
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Space charge

Particularly hard to demonstrateit is there and that it’s affecting our
measurements

Following a reference paper we try to estimate this with an dimensionless
parameter
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Recombination
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Simulation data

5MeV hadrons

20MeV hadrons

internal muons (~ 20-50 MceV)

external muons (= 20-50 MeV)

Ethres [MeV] |oy [ns] op/E ot [ns] op/E ¢ [ns| op/E ot [ns| op/E
Gy |3.5-34 1-8.7 02-073 [044-19  0.08-036 [055-1.5  0.09-0.23 0.73- 1.55  0.11 - 0.24
G2 |2.6-58 1-25 0.21-0.38 |0.44-0.86 0.08-0.14 [045-0.73 0.07-0.11 0.43-0.71  0.07 - 0.11
Gz [2-24 1-2.1 022-024 [041-066 008-009 [045-062 0.07-0.09 0.42-07  0.05-0.1




