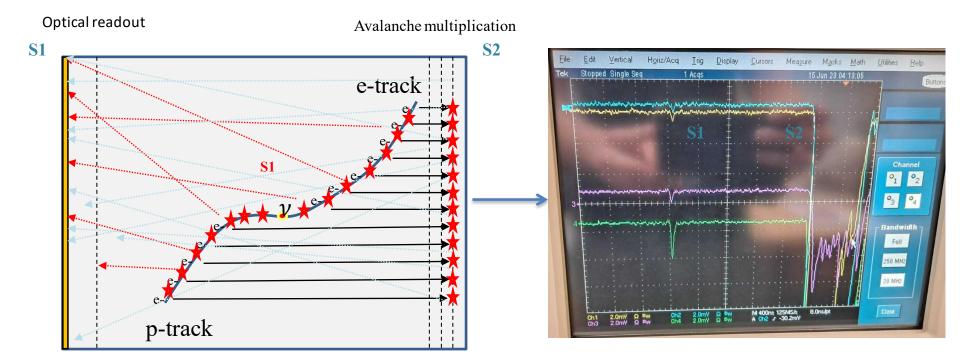
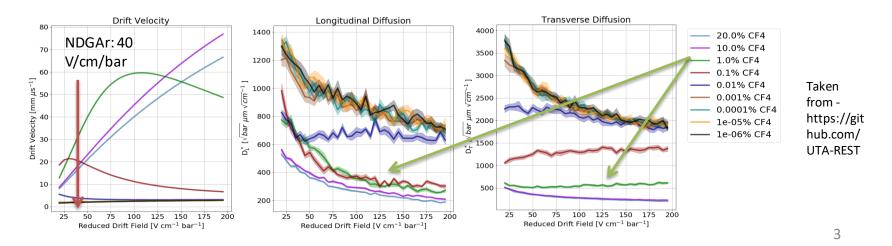
Wavelength-shifting in Ar-CF4 mixtures towards NDGAr

DUNE Collaboration Meeting 21/06/2023

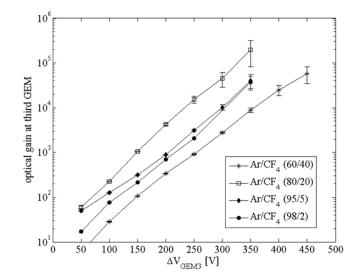

P.Amedo¹, F. Brunbauer², D. González-Díaz¹,S. Leardini¹, A. Saá-Hernández¹,D. J. Fernández-Posada¹, E. Oliveri², L. Ropelewski²

¹Galician Institute for High Energy Physics (IGFAE), University of Santiago de Compostela

²CERN, Geneva, Switzerland


Introduction

- Our main goal is to try and enable an optical readout in ND-GAr, which would give us access to the T_0 information of the interactions
- This could improve track matching with ND-LAr, neutron/gamma identification via ToF, and open the possibility of doing very low-energy physics (like hyperons) and BSM.


The role of gas mixtures in TPCs

- There are several reasons why we want a mixture and not just a pure noble gas
 - It reduces longitudinal and transversal diffusion
 - It increases drift velocity
 - It quenches VUV-photons and prevents destabilization of the avalanche-process due to photoelectric effect
- However, finding a scintillating mixture that provides all those benefits while keeping the target Argon-pure is not obvious. Possible candidate: CF₄

Why CF_4 ?

- Some good general properties
 - Transverse diffusion (at 1% mixing) of less than 1.6 mm/m^{1/2}, better than Alice (2.2), T2K (2.7) or baseline ND-GAr (from 3.1 at 2% CH₄ to 1.8 at 10% CH₄)
 - No attachment at working drift fields (40 V/(cm·bar))
 - At 1% of CF_4 the mass fraction is below the one of the P10 gas (Argon 90% CH_4 10%)
 - Highly inert and compatible with getters
 - It scintillates in the UV and visible bands so latter can be detected using commercial photosensors
 - Some previous works have shown charge gains up to 10⁴-3·10⁵, with which optical gains of 10⁴ are possible

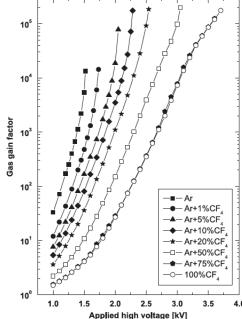
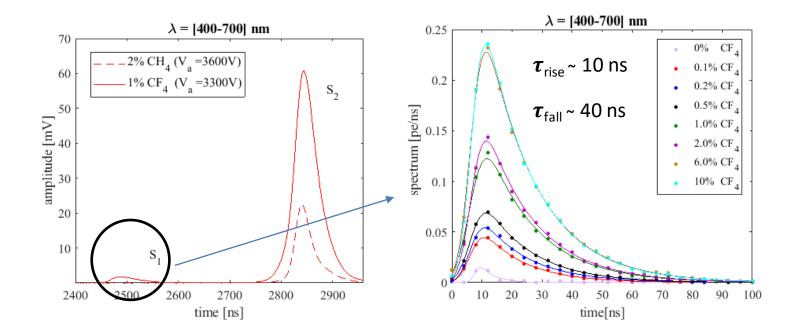



Fig. 1. Gas gain as the function of applied high voltage for $Ar + CF_4$ mixtures.

Previous results

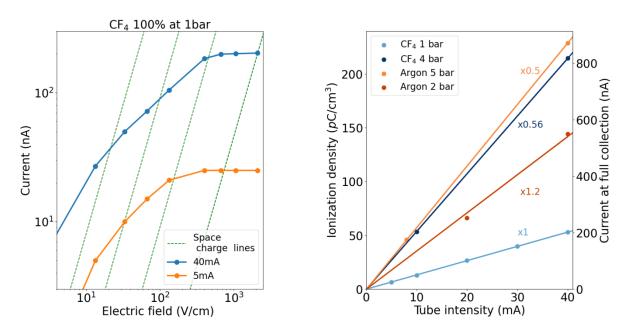
- Yield measurements were done in our lab with an ²⁴¹Am source in the range of 400-700 nm and 250-400 nm
- We have found a gas mixture, Ar- CF₄ at 1%, which allows for the optical readout to be implemented while keeping the target nearly Argon-pure
- Geant4 simulations show that an energy threshold of 5 MeV and O(1ns) time tagging can be achieved through a SiPM plane at the cathode

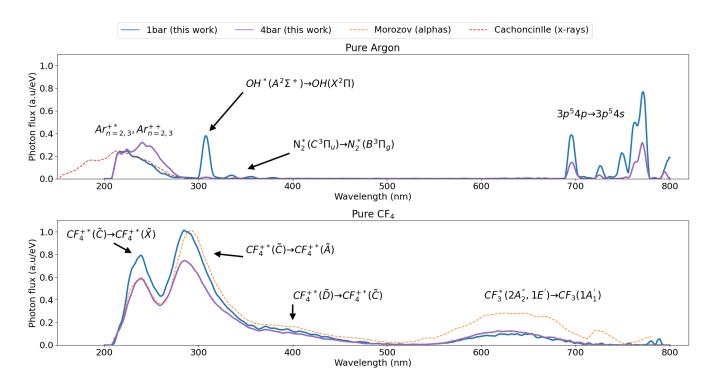


Objectives

- Nevertheless, there were no measurements of the spectral components of the primary scintillation in Ar- CF_4
- Our objective was to measure the S1 scintillation spectrum from Ar- CF₄ mixtures at low concentrations (0.1-10%) and different pressures using and x-ray tube

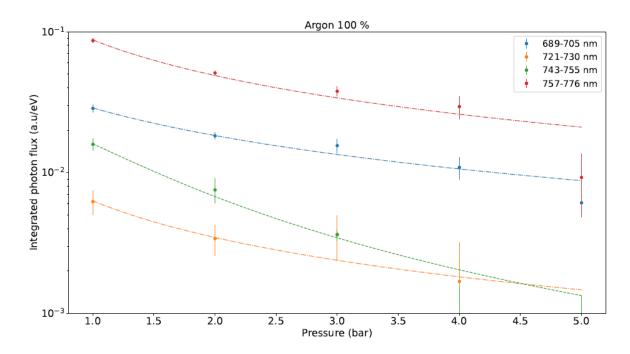
Experimental setup

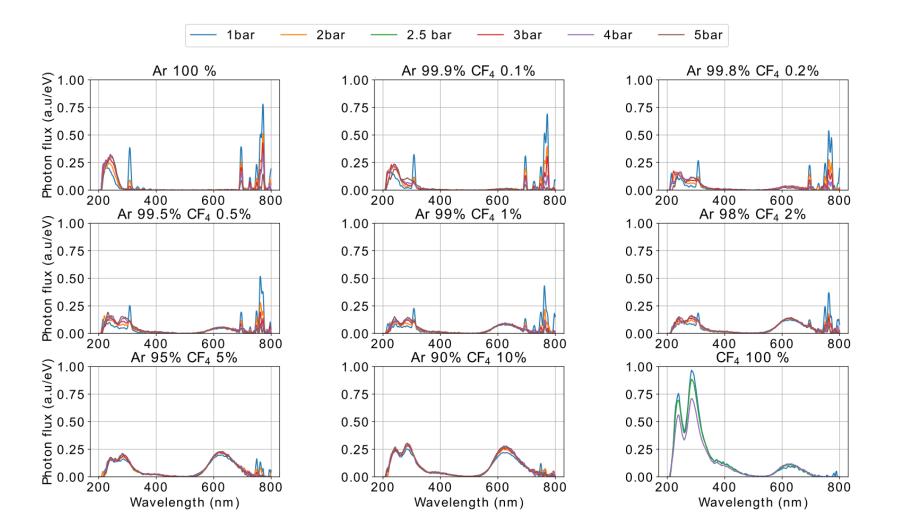

- A small chamber was built with a thin aluminum entrance window, an aluminum foil as cathode and an anode were we collected the current
- We collected the light with a CCD spectrometer after the gas was irradiated with an x-ray tube
- The system had an RGA for purity control and the main impurities found were water, nitrogen and oxygen


Experimental setup

- Measurements were taken at no field and at a field high enough to ensure current saturation. Different tube intensities, pressures and mixtures were explored
- All results are proportional to the number of photons detected divided by the saturation current and the W₁ value for each mixture
- We see no signs of space charge or recombination effects, as expected based on ionization density considerations

Results for pure gases


- The main bands come from transitions in CF₄^{+*}, CF₃^{*}, argon's third continuum and its atomic decays
- Peaks from impurities in the chamber come from OH and N₂

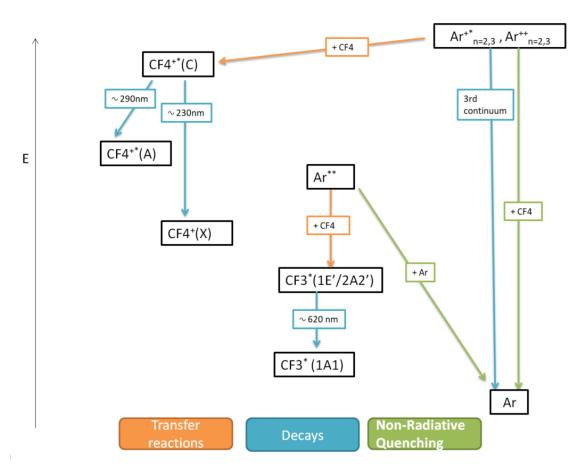

Time-resolved spectroscopy of high pressure rare gases excited by an energetic flash X-ray source, C. Cachoncille, 1995 Effect of the electric field on the primary scintillation from CF4 A. Morozov et al

Peak analysis

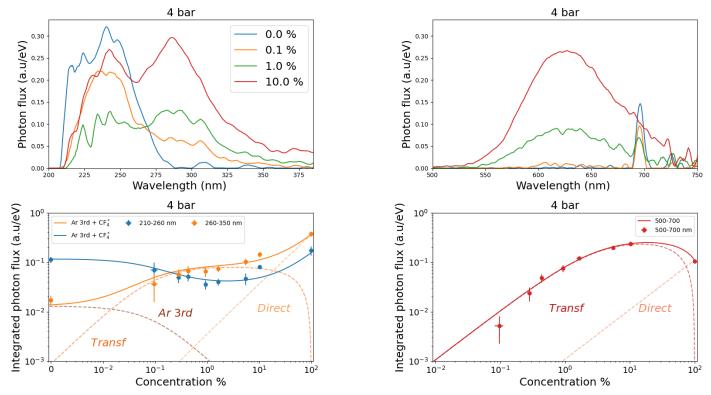
- In general, the impurity peaks tend to decrease with pressure and CF4 concentration
- The yield of the different argon infrared peaks decreases with pressure
- This behavior is consistent with self-quenching, be it either 2-body or 3-body



Spectra for Argon-CF4


Band analysis

- The visible band seems to indicate the presence of an optimum
- The interplay of argon's third continuum and the UV scintillation of CF₄ causes the appearance of a minimum


Model and data comparison

• A kinetic model was developed where we compute the scintillation probabilities of different states of interest, namely CF₄^{+*}(C), CF₃^{*}(1E´,2A2´) and an effective state representing the precursors of argon's third continuum

Model and data comparison

- A global fit to the data for each band was performed using a kinetic model with 4 free parameters -2 for the UV bands and 2 for the VIS bands-, resulting in a reduced chi-square of 1.5
- Good agreement was found for both UV and VIS bands

Summary and conclusions

- Recently, we measured the primary scintillation spectrum for different Ar- CF₄ mixtures and pressures, including pure Argon and pure CF₄, with an x-ray tube
- Based on our most up-to-date results, including simulations and experiments, a mixture of Ar- CF₄ at 1% is adequate for a future detector like NDGAr operated with optical readout

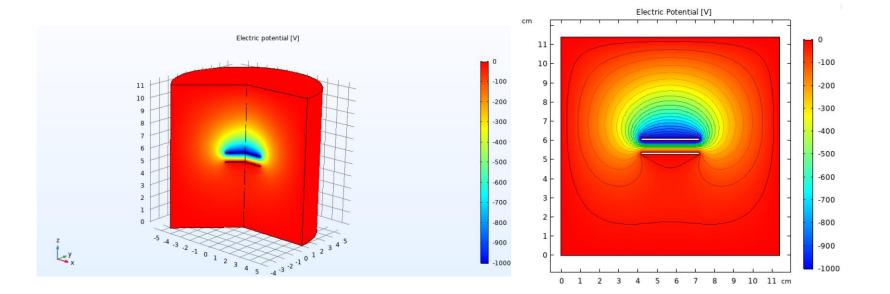
Mixture: Argon 99% CF4 1%											
UV yield (ph/MeV)	V yield (ph/MeV) VIS yield (ph/MeV		Rise time (ns)	Fall time (ns)							
300	1400	3.54	~10	~40							
Drift velocity (cm/µs) at nominal field (40 V/cm/bar)	Breakdown voltage at 10 bar (kV) ¹	Optical gain at 1 bar ²	for 5 MeV	Time resolution for 5 MeV hadrons (ns) (G4 sim) ³							
4	61 (1 cm) 670 (10 cm)	10 ⁴ -10 ⁵	1-2.5	21-38							

1-Dielectric Strength of Noble and Quenched Gases for High Pressure Time Projection Chambers, L. Norman et al, 2021

3-Saá-Hernández et al, On the determination of the interaction time of GeV-neutrinos in large argon-gas TPCs, to be submitted to JHEP

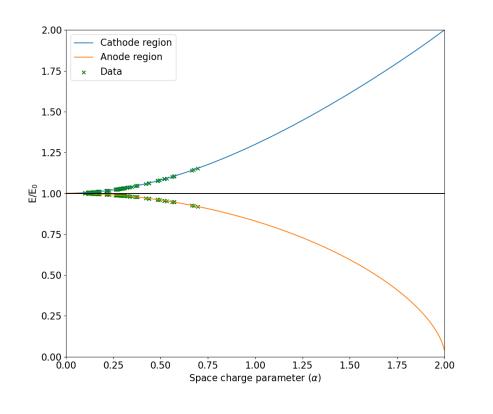
2- D. González-Díaz, A survey on GEM-based readouts and gas mixtures fo optical TPCs, Vienna Conference 2016,

https://indico.cern.ch/event/391665/contributions/1827205/


Fin

Thanks for your attention!

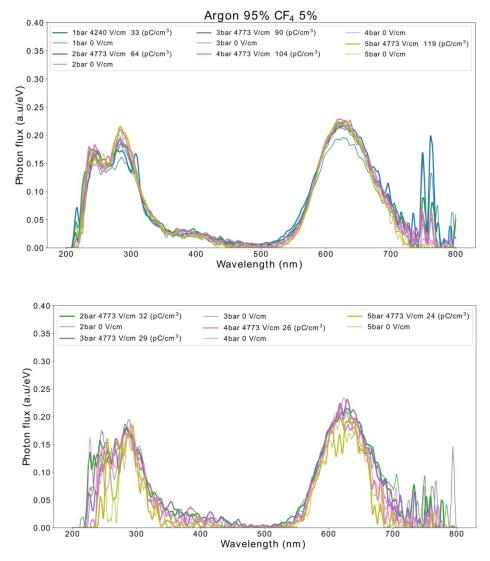
Appendix


Electric field uniformity

- A numerical simulation was run in COMSOL to check the field uniformity inside the chamber
- We were limited to a 1cm diameter window from the x-rays tube

Space charge

- Particularly hard to demonstrate it is there and that it's affecting our measurements
- Following a reference paper we try to estimate this with an dimensionless parameter


$$\alpha = \frac{D}{E_0} \sqrt{\frac{K}{\epsilon \mu}}$$

- D = Detector thickness
- $E_0 = Applied field$
- K = Number of ions
- Epsilon = Dielectric constant
- Mu = Ion mobility

Space Charge in Ionization Detectors, Sandro Palestini and Kirk T. McDonald, 2007 (updated 2016)

Recombination

- No sign of recombination in light emission
- Spectral shape is preserved between zero field and the collection field
- Ionization density (tube intensity) plays no role
- Based on previous experiments with alpha particles, this is expected given the ionization density

Simulation data

		5MeV hadrons		20MeV hadrons		internal muons ($\simeq 2050~{\rm MeV})$		external muons ($\simeq 20-50$ MeV)	
	E_{thres} [MeV]	σ_t [ns]	σ_E/E	σ_t [ns]	σ_E/E	σ_t [ns]	σ_E/E	σ_t [ns]	σ_E/E
G_1	3.5 - 34	1 - 8.7	0.2 - 0.73	0.44 - 1.9	0.08 - 0.36	0.55 - 1.5	0.09 - 0.23	0.73 - 1.55	0.11 - 0.24
G_2	2.6 - 5.8	1 - 2.5	0.21 - 0.38	0.44 - 0.86	0.08 - 0.14	0.45 - 0.73	0.07 - 0.11	0.43 - 0.71	0.07 - 0.11
G_3	2 - 2.4	1 - 2.1	0.22 - 0.24	0.41 - 0.66	0.08 - 0.09	0.45 - 0.62	0.07 - 0.09	0.42 - 0.7	0.05 - 0.1