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MOTIVATIONS

✦ SAND expected to take data from Day-1 of DUNE Phase I:

=⇒ Collect ∼ 6.4× 1021 pot of data in 5 years before FD4 operational

✦ SAND offers unique opportunities to broaden Phase II physics program:

● Reduce LBL systematics from νµ , ν̄µ , νe , and ν̄e flux and nuclear effects in Ar/C/O;

● Precision measurements of fundamental interactions & structure of nucleons and nuclei.

=⇒ Synergistic programs sharing same requirements
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EXPECTED SAND STATISTICS IN PHASE I

Target CP optimized FHC (3.2×1021 pot) CP optimized RHC (3.2×1021 pot)
νµ CC ν̄µ CC νe CC ν̄e CC νµ CC ν̄µ CC νe CC ν̄e CC

CH2 18,924,127 908,116 279,444 46,403 2,961,415 7,084,454 132,369 100,768
H 1,778,292 162,289 26,758 8,083 282,496 1,318,007 12,672 18,986
C 2,250,198 97,882 33,162 5,030 351,578 756,781 15,709 10,851
Ar 4,529,936 176,736 67,468 9,459 699,436 1,362,166 31,901 20,170
Pb 90,367,418 3,647,913 1,342,563 190,080 15,091,491 26,505,018 636,049 385,897

NOTE: Phase I assumed to cover initial 5y with about 3.2×1021 pot in FHC and 3.2×1021 pot in RHC
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CONTROL OF SYSTEMATICS

✦ STT designed to offer a control of ν-target(s) similar to e± DIS experiments:

● “Transparent” target/tracker system with total length ∼ 1.3X0 and average ρ ≤ 0.18 g/cm3 ;

● Accurate reconstruction of transverse plane kinematics from particle 4-momenta.

✦ Low-density design & target mass allow accurate in-situ calibrations:

● ∆p < 0.2% momentum scale uncertainty from K0 → π+π− in STT volume (337,000 in FHC);

● p reconstruction and identification, vertex, etc. from Λ → pπ− in STT volume (506,000 in FHC);
● e± reconstruction and identification from γ → e+e− in STT volume (8× 106 in FHC).

✦ Precise in-situ measurement of (anti)neutrino fluxes:

● Relative νµ & ν̄µ flux vs. Eν from νµH → µ−pπ+ & ν̄µH → µ+n: ∆Φ(Eν) ∼ 1% ;

● Absolute νµ flux from νe− → νe− elastic scattering: < 2%;
● Absolute ν̄µ flux from ν̄µH → µ+n with Q2 < 0.05 GeV2.

✦ Calibration of (anti)neutrino energy scale ∆Eν from comparison of
ν(ν̄) CC interactions on nuclear targets A and on H with similar detector acceptance

=⇒ Expected level of total systematic uncertainties ! 2% after Phase I
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For a 1 ton target in SAND uncertainties already dominated by 
systematics (1-2%) for exposures  pot (~1.6y with MI short cycle) ≥ 2 × 1021

E⌫
rec (GeV)
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 pot∼ 2 × 1021
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PHASE II OPPORTUNITIES WITH SAND

✦ Increase of statistics for measurements of rare processes (statistics limited in Phase I):

● Exclusive processes with tiny cross-section: ν-e elastic, coherent meson production, etc.
● Searches for new physics: sterile neutrinos, NSI, NHL, etc.

=⇒ Extend physics sensitivity of established Phase I analyses

✦ Change of targets in STT:

Individual targets in STT can be replaced/removed during data taking allowing the
probe of a broad range of different nuclei.

✦ Change of STT average density:

If unexpected results in Phase I, data with reduced density 0.005 ≤ ρ ≤ 0.18 g/cm3

could provide increased resolutions and/or lower backgrouds for cross-checks.

✦ Change of beam spectrum:

High-energy beam optimized for ντ appearance in FD can substantially expand physics
potential of precision measurements (EW, QCD, etc.) & BSM searches in SAND.
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STT TARGETS INDIVIDUALLY REPLACEABLE

Phase I targets

✦ Total of 78 thin (∼1.5% X0) passive targets separated from active detector (straw layers);

✦ Targets of high chemical purity (∼ 97% of mass) keeping average density ρ ≤ 0.18 g/cm3

✦ High track sampling: 0.15 (0.36)%X0 ⊥ (∥) with total detector thickness ∼ 1.3X0;

✦ “Solid” hydrogen target from a subtraction of CH2 & C targets.

=⇒ Individual targets can be replaced with planar targets of desired material up to 19mm thick
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CALCIUM TARGET

✦ Isoscalar nucleus with same A=40 as Ar:

● Nuclear modifications & test of isospin symmetry;

● Direct comparison with Ar target in SAND probe of flavor dependence of nuclear effects in A=40.

=⇒ Relevant both for nuclear physics & for LBL systematics in Ar

✦ Integrate a few calcium planes within STT:

● Target planes assembled from solid Ca “tiles” ∼4 mm thick: −→ Density 1.55 g/cm3, ∼0.038 X0;

● Calcium targets to be enclosed in thin CH2 shell and possibly oil-coated for safety;

● Calcium target planes installed upstream close to Ar target (GRAIN)

=⇒ Need to test assembly of calcium tiles and safety
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OXYGEN TARGET

✦ Cross-sections & related nuclear smearing on “solid” oxygen target:

NO(x⃗) ≡ NCH2O(x⃗)−
MCH2/CH2O

MCH2

NCH2
(x⃗)

● Interactions on oxygen from subtraction between polyoxymethylene (delrin) and default CH2 targets.
Oxygen content by mass within delrin is dominant at 53.3%, excellent mechanical properties.

● Direct measurement on oxygen target (NOT water) and separation of water constituents O and H.

=⇒ Relevant for nuclear physics & in case of non-Ar FD4 (e.g. Theia)

✦ Cross-sections on water target:

NH2O(x⃗) ≡ NCH2O(x⃗)−
MC/CH2O

MC
NC(x⃗)

● Exploit simultaneous presence of alternated CH2, C, and CH2O targets in STT.
● Interactions on water from subtraction between polyoxymethylene (CH2O) and graphite (C) targets.
Water content by mass within delrin is 60%, mass of available C targets larger than C in delrin.
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Integrated over all angles

SAND can provide high statistics samples of interactions on H and nuclear targets A 
with large acceptance over the full 4  angle down to low momenta (  g/cm3)π ρ < 0.18
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Optimization of the ratio between the CH2 and C thickness shows that 
we can keep acceptance differences among CH2, C, CH2O targets <10-3 for all particles 
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DEUTERIUM TARGET

✦ Bound np system with significant nuclear modifications

=⇒ Comparison with H first direct measurement of nuclear modifications in D
=⇒ Complementary measurement of absolute νµ flux from νµn → µ−p at Q2 ∼ 0

✦ Use of CD2 plastics not feasible due to prohibitive costs.

✦ Subtraction between D2O and H2O alternated targets:

Nn/D(x⃗) ≡ ND2O(x⃗)−NH2O(x⃗)

● Planes with 12mm thick water layers encapsulated in 1.5mm delrin (CH2O) shell
−→ Overall ∼90% water content, ∼0.044 X0

● Use identical delrin shells for both D2O and H2O targets to subtract shells
−→ Water filling giving same oxygen mass in both targets

=⇒ Need to optimize targets, test leaks, etc.
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HIGH-ENERGY BEAM OPTION

✦ After Booster replacement in Phase II beam intensity increase up to 2.5× 1021 pot/year
(60% increase from Phase I with MI short cycle)

✦ High-energy LBNF beam option optimized for ντ appearance in FD:

● Conceivable a dedicated run (1-2 years) at a later Phase II stage;

● Change of beam spectrum would affect both FD and ND in DUNE.

=⇒ High-energy data can significantly expand SAND physics reach
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MINIMAL RUN TIME AFTER TARGET CHANGE

✦ “Solid” hydrogen target required at all times to constrain systematics:
keep all graphite targets in Phase II (∼600 kg)

✦ Replace some of the 70 CH2 targets in Phase II keeping average density ≤0.18 g/cm3

=⇒ Realistic fiducial mass of new targets from 200 kg to 1 ton

Mass CP optimized beam (2.5×1021 pot) ντ optimized beam (2.5×1021 pot)
(isoscalar) νµ CC FHC ν̄µ CC RHC νµ CC FHC ν̄µ CC RHC

200 kg 666,000 224,000 1,589,000 517,000
500 kg 1,665,000 560,000 3,972,000 1,294,000
1 ton 3,330,000 1,120,000 7,944,000 2,588,000

=⇒ In less than one year enough statistics for sensible physics measurements
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GENERAL PURPOSE FACILITY

✦ SAND in Phase II allows to probe a variety of nuclei with excellent control of
systematic uncertainties (scales, flux, & nuclear effects)

=⇒ General purpose (anti)neutrino physics facility

✦ Rich physics program complementary to fixed-target, collider and nuclear physics efforts:

● Measurement of sin2 θW and electroweak physics;

● Precision tests of isospin physics & sum rules (Adler, GLS);

● Measurements of strangeness content of the nucleon (s(x), s̄(x),∆s, etc.);

● Studies of QCD and structure of nucleons and nuclei;

● Precision tests of the structure of the weak current: PCAC, CVC;

● Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc. .....

● Precision measurements as probes of New Physics (BSM);

● Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....

=⇒ Hundreds of diverse physics topics offering insights on various fields

✦ Measurements can concurrently constrain LBL systematics for both Ar and non-Ar FD
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FREE NEUTRON TARGET

✦ Structure function F νn directly related to F ν̄p by ISOSPIN SYMMETRY

✦ Correction factors:

Rp/n
2 (x,Q2) =

F ν̄p
2 (x,Q2)

F νn
2 (x,Q2)

− 1; Rp/n
3 (x,Q2) =

xF ν̄p
3 (x,Q2)

xF νn
3 (x,Q2)

− 1

● Quark mixing (CKM): sensitivity to Vus and Vud;
● Strange sea quarks and charm production: sensitivity to mc and strange sea asymmetry.

=⇒ Self-determined d/u and s (synergy with 12 GeV JLab program)
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TESTS OF ISOSPIN SYMMETRY

✦ Isospin symmetry can be verified with ISOSCALAR TARGET :

RA
2 (x,Q

2) =
F ν̄A
2 (x,Q2)

F νA
2 (x,Q2)

− 1; RA
3 (x,Q

2) =
xF ν̄A

3 (x,Q2)

xF νA
3 (x,Q2)

− 1

● Exploit C target in “solid” hydrogen: validation of Rp/n
2,3 corrections to free neutrons;

● Search for direct violations of the isospin (charge) symmetry from deviations in RA
2,3.

✦ If anomalous deviations in RA
2,3 independent measurement with isoscalar 40Ca target
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✦ Comparison of Ca and Ar can probe FLAVOR DEPENDENCE of nuclear effects:

● Same A = 40: neutron excess in Ar β = (Z−N)/A ∼ −0.1, Ca mostly isoscalar β ∼ −2.6×10−3;

● Insights on physics mechanisms responsible for isovector effects at both nucleon and nuclear level.

✦ Isovector effects relevant for LBL oscillation measurements with non-isoscalar nuclei:
e.g. DUNE exploits tiny differences between ν and ν̄ CC on 40Ar
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NUCLEAR MODIFICATIONS OF BOUND NUCLEONS

✦ Availability of ν-H & ν̄-H allows direct measurement of nuclear modifications of F2,3:

RA
2,3(x,Q

2) =
F νA
2,3

ZF νp
2,3 + (A− Z)F νn

2,3

∼
F νA
2,3

ZF νH
2,3 + (A− Z)F ν̄H

2,3

(x,Q2)

● Comparison with e/µ DIS results and nuclear models;
● Study flavor dependence of nuclear modifications (W±/Z helicity, C-parity, Isospin);
● Effect of the axial-vector current.

✦ Study nuclear modifications to parton distributions in a broad range of x and Q2.

✦ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron
duality in different structure functions F2, xF3, R = FL/FT .

✦ Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic
and resonance production.

=⇒ Synergy with Heavy Ion and EIC physics programs for cold nuclear matter effects.
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ELECTROWEAK MEASUREMENTS

✦ Complementarity with colliders & low-energy measurements:

● Different scale of momentum transfer with respect to LEP/SLD (off Z0 pole);
● Direct measurement of neutrino couplings to Z0

=⇒ Only other measurement LEP Γνν

● Single experiment to directly check the running of sin2 θW ;
● Independent cross-check of the NuTeV sin2 θW anomaly (∼ 3σ in ν data) in a similar Q2 range.

ν-N DIS

ν-e elastic

✦ Different independent channels:

● Rν = σν

NC

σν

CC

in ν-N DIS (∼0.35%)

● Rνe =
σν̄

NC

σν

NC

in ν-e− NC elastic (∼1%)

● NC/CC ratio (νp → νp)/(νn → µ−p)
in (quasi)-elastic interactions

● NC/CC ratio ρ0/ρ+ in coherent processes

=⇒ Combined EW fits

✦ Achievable sensitivity
depending upon HE beam exposure

Roberto Petti USC
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SUMMARY

✦ SAND well understood detector from DUNE Phase I:
● Collect ∼ 6.4× 1021 pot of data from Day-1 in DUNE Phase I;

● Use of data calibration samples (H, V0, etc.) to constrain systematic uncertainties ! 2%.

✦ Phase II opportunities with SAND:
● Increase of statistics for measurements of rare processes & searches for BSM physics
(statistics limited in Phase I);

● Change of targets in STT allowing the probe of a broad range of different nuclei;

● Change of STT average density within 0.005 ≤ ρ ≤ 0.18 g/cm3 for cross-checks;

● Change of beam spectrum with high-energy beam option optimized for ντ apperance.

✦ SAND facility for precision measurements of fundamental interactions & structure of
nucleons and nuclei complementary to fixed-target, collider, and nuclear physics efforts

=⇒ Hundreds of diverse physics topics offering insights on various fields

✦ SAND can constrain LBL systematics for both Ar and non-Ar FD options from
νµ, ν̄µ, νe, ν̄e fluxes and nuclear effects in Ar/C/O
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