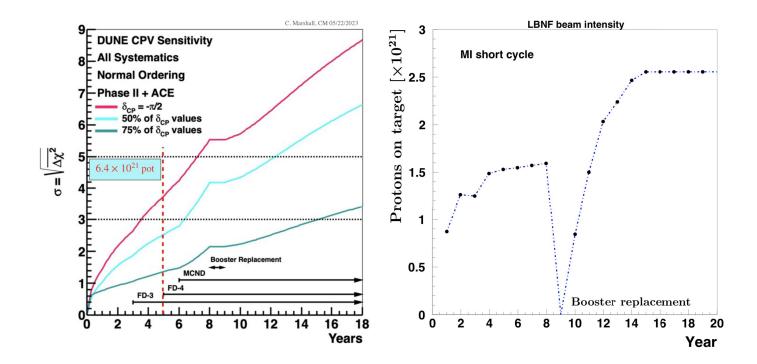
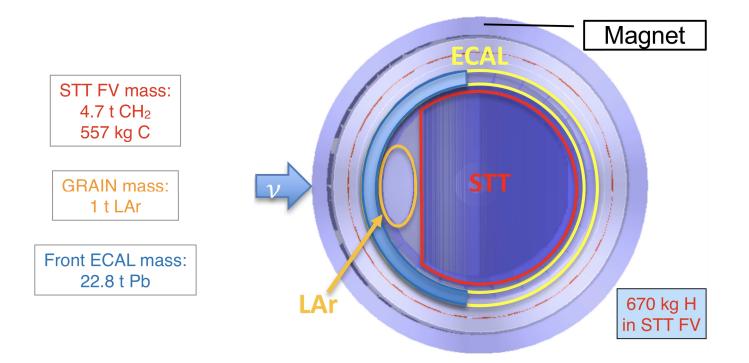
Probing Nucleons and Nuclei with SAND in Phase II


R. Petti

University of South Carolina, Columbia SC, USA

DUNE Phase II ND workshop 22 June 2023

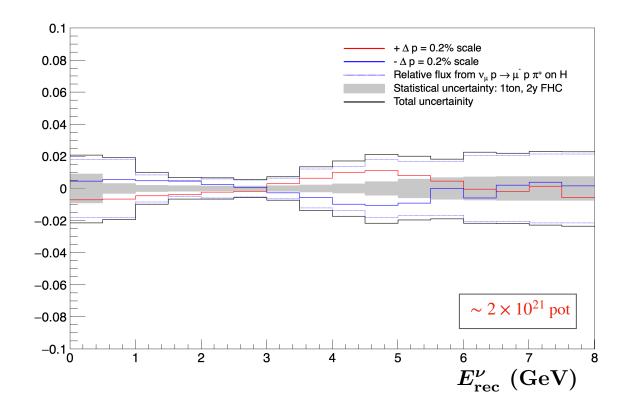
MOTIVATIONS


- ◆ SAND expected to take data from Day-1 of DUNE Phase I: ⇒ Collect ~ 6.4×10^{21} pot of data in 5 years before FD4 operational
- ◆ SAND offers unique opportunities to broaden Phase II physics program:
 - Reduce LBL systematics from ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , and $\bar{\nu}_{e}$ flux and nuclear effects in Ar/C/O;
 - Precision measurements of fundamental interactions & structure of nucleons and nuclei.
 - ⇒ Synergistic programs sharing same requirements

EXPECTED SAND STATISTICS IN PHASE I

Target	CP optimized FHC (3.2 $ imes$ 10 21 pot)				CP optimized RHC (3.2 $ imes$ 10 21 pot)			
	$ u_{\mu}$ CC	$ar{ u}_{\mu}$ CC	$ u_e {\cal CC}$	$ar{ u}_e$ CC	$ u_{\mu}$ CC	$ar{ u}_{\mu}$ CC	$ u_e {\cal CC}$	$ar{ u}_e$ CC
CH_2	18,924,127	908,116	279,444	46,403	2,961,415	7,084,454	132,369	100,768
Н	1,778,292	162,289	26,758	8,083	282,496	1,318,007	12,672	18,986
С	2,250,198	97,882	33,162	5,030	351,578	756,781	15,709	10,851
Ar	4,529,936	176,736	67,468	9,459	699,436	1,362,166	31,901	20,170
Pb	90,367,418	3,647,913	1,342,563	190,080	15,091,491	26,505,018	636,049	385,897

NOTE: Phase I assumed to cover initial 5y with about 3.2×10^{21} pot in FHC and 3.2×10^{21} pot in RHC



CONTROL OF SYSTEMATICS

• STT designed to offer a control of ν -target(s) similar to e^{\pm} DIS experiments:

- "Transparent" target/tracker system with total length $\sim 1.3X_0$ and average $\rho \leq 0.18 \text{ g/cm}^3$;
- Accurate reconstruction of transverse plane kinematics from particle 4-momenta.
- Low-density design & target mass allow accurate in-situ calibrations:
 - $|\Delta p < 0.2\%|$ momentum scale uncertainty from $K_0 \rightarrow \pi^+\pi^-$ in STT volume (337,000 in FHC);
 - p reconstruction and identification, vertex, etc. from $\Lambda \rightarrow p\pi^-$ in STT volume (506,000 in FHC);
 - e^{\pm} reconstruction and identification from $\gamma \rightarrow e^{+}e^{-}$ in STT volume (8 × 10⁶ in FHC).
- Precise in-situ measurement of (anti)neutrino fluxes:
 - Relative ν_{μ} & $\bar{\nu}_{\mu}$ flux vs. E_{ν} from $\nu_{\mu}H \rightarrow \mu^{-}p\pi^{+}$ & $\bar{\nu}_{\mu}H \rightarrow \mu^{+}n$: $|\Delta\Phi(E_{\nu}) \sim 1\%|$;
 - Absolute ν_{μ} flux from $\nu e^- \rightarrow \nu e^-$ elastic scattering: < 2%;
 - Absolute $\bar{\nu}_{\mu}$ flux from $\bar{\nu}_{\mu}H \rightarrow \mu^{+}n$ with $Q^{2} < 0.05 \text{ GeV}^{2}$.
- Calibration of (anti)neutrino energy scale ΔE_{ν} from comparison of $\nu(\bar{\nu})$ CC interactions on nuclear targets A and on H with similar detector acceptance

 \implies Expected level of total systematic uncertainties $\lesssim 2\%$ after Phase I

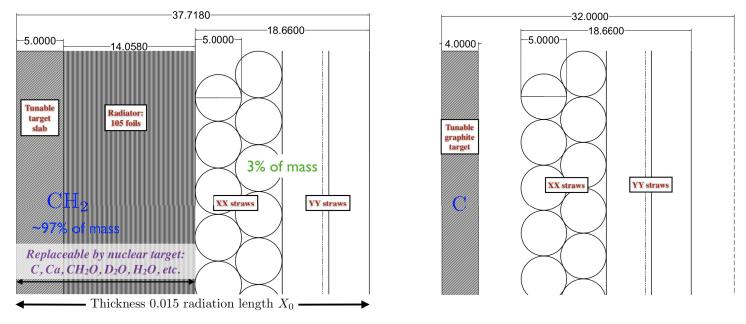
For a 1 ton target in SAND uncertainties already dominated by systematics (1-2%) for exposures $\geq 2 \times 10^{21}$ pot (~1.6y with MI short cycle)

PHASE II OPPORTUNITIES WITH SAND

Increase of statistics for measurements of rare processes (statistics limited in Phase I):

- Exclusive processes with tiny cross-section: ν -e elastic, coherent meson production, etc.
- Searches for new physics: sterile neutrinos, NSI, NHL, etc.
- \implies Extend physics sensitivity of established Phase I analyses

Change of targets in STT:


Individual targets in STT can be replaced/removed during data taking allowing the probe of a broad range of different nuclei.

Change of STT average density:

If unexpected results in Phase I, data with reduced density $0.005 \le \rho \le 0.18 \text{ g/cm}^3$ could provide increased resolutions and/or lower backgrouds for cross-checks.

• Change of beam spectrum:

High-energy beam optimized for ν_{τ} appearance in FD can substantially expand physics potential of precision measurements (EW, QCD, etc.) & BSM searches in SAND.

Phase I targets

- ◆ Total of 78 thin ($\sim 1.5\% X_0$) passive targets separated from active detector (straw layers);
- Targets of high chemical purity (~ 97% of mass) keeping average density $\rho \leq 0.18 \text{ g/cm}^3$
- + High track sampling: 0.15 (0.36)% $X_0 \perp (\parallel)$ with total detector thickness $\sim 1.3X_0$;
- "Solid" hydrogen target from a subtraction of $CH_2 \& C$ targets.

⇒ Individual targets can be replaced with planar targets of desired material up to 19mm thick

CALCIUM TARGET

- ✤ Isoscalar nucleus with same A=40 as Ar:
 - Nuclear modifications & test of isospin symmetry;
 - Direct comparison with Ar target in SAND probe of flavor dependence of nuclear effects in A=40.

 \implies Relevant both for nuclear physics & for LBL systematics in Ar

Integrate a few calcium planes within STT:

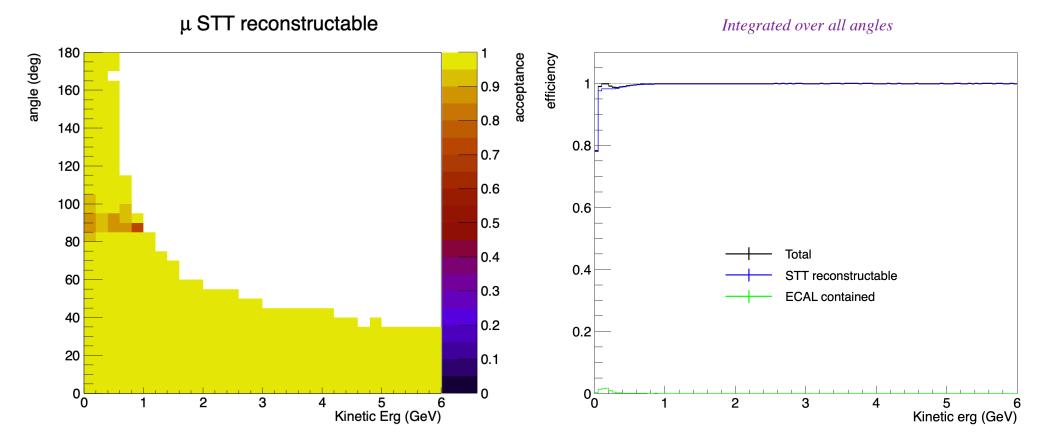
- Target planes assembled from solid Ca "tiles" \sim 4 mm thick: \longrightarrow Density 1.55 g/cm³, \sim 0.038 X₀;
- Calcium targets to be enclosed in thin CH₂ shell and possibly oil-coated for safety;
- Calcium target planes installed upstream close to Ar target (GRAIN)

 \implies Need to test assembly of calcium tiles and safety

Cross-sections & related nuclear smearing on "solid" oxygen target:

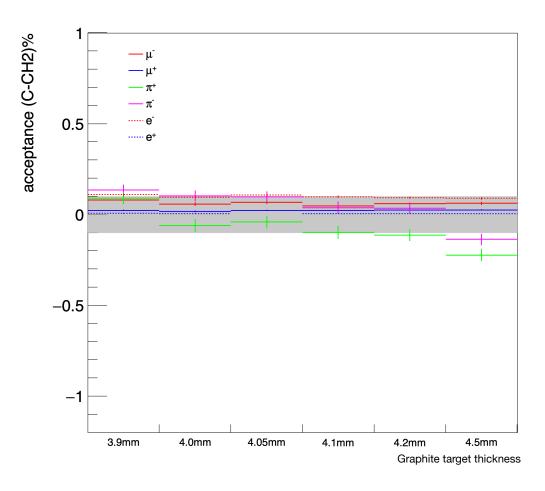
$$N_{\rm O}(\vec{x}) \equiv N_{\rm CH_2O}(\vec{x}) - \frac{M_{\rm CH_2/CH_2O}}{M_{\rm CH_2}} N_{\rm CH_2}(\vec{x})$$

- Interactions on oxygen from subtraction between polyoxymethylene (delrin) and default CH₂ targets. Oxygen content by mass within delrin is dominant at 53.3%, excellent mechanical properties.
- Direct measurement on oxygen target (NOT water) and separation of water constituents O and H.


 \implies Relevant for nuclear physics & in case of non-Ar FD4 (e.g. Theia)

Cross-sections on water target:

$$N_{\rm H_2O}(\vec{x}) \equiv N_{\rm CH_2O}(\vec{x}) - \frac{M_{\rm C/CH_2O}}{M_{\rm C}} N_{\rm C}(\vec{x})$$


- Exploit simultaneous presence of alternated CH₂, C, and CH₂O targets in STT.
- Interactions on water from subtraction between polyoxymethylene (CH₂O) and graphite (C) targets. Water content by mass within delrin is 60%, mass of available C targets larger than C in delrin.

Target material	Composition	Density	Thickness	Rad. length	Nucl. int. length
Polypropylene	CH ₂	$0.91 \mathrm{g/cm^3}$	$7.0 \mathrm{mm}$	$0.015 X_0$	$0.008 \lambda_I$
Graphite	С	$1.80 \mathrm{~g/cm^3}$	$4.0 \mathrm{mm}$	$0.016 X_0$	$0.008 \ \lambda_I$
Polyoxymethylene	CH_2O	1.41 g/cm^3	$4.5 \mathrm{mm}$	$0.016 X_0$	$0.008 \ \lambda_I$

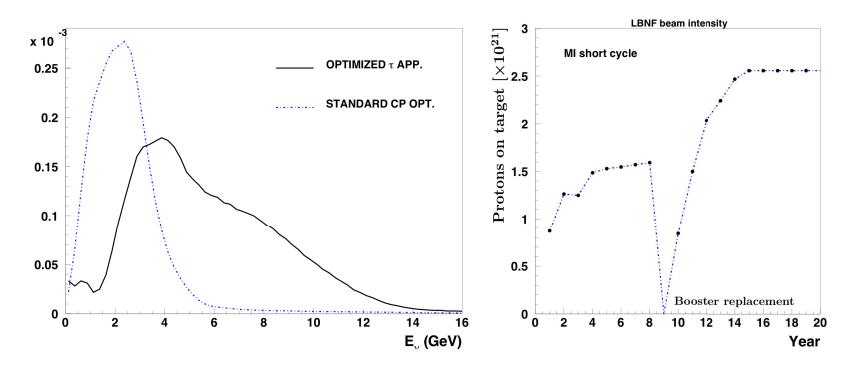
SAND can provide high statistics samples of interactions on H and nuclear targets A with large acceptance over the full 4π angle down to low momenta ($\rho < 0.18$ g/cm³)

10

Optimization of the ratio between the CH_2 and C thickness shows that we can keep acceptance differences among CH_2 , C, CH_2O targets <10⁻³ for all particles

DEUTERIUM TARGET

- Bound np system with significant nuclear modifications
 - \implies Comparison with H first direct measurement of nuclear modifications in D
 - \implies Complementary measurement of absolute ν_{μ} flux from $\nu_{\mu}n \rightarrow \mu^{-}p$ at $Q^{2} \sim 0$
- ♦ Use of CD₂ plastics not feasible due to prohibitive costs.
- Subtraction between D_2O and H_2O alternated targets:


 $N_{\rm n/D}(\vec{x}) \equiv N_{\rm D_2O}(\vec{x}) - N_{\rm H_2O}(\vec{x})$

- Planes with 12mm thick water layers encapsulated in 1.5mm delrin (CH₂O) shell \rightarrow Overall \sim 90% water content, \sim 0.044 X_0
- Use identical delrin shells for both D_2O and H_2O targets to subtract shells
 - \longrightarrow Water filling giving same oxygen mass in both targets
- \implies Need to optimize targets, test leaks, etc.

HIGH-ENERGY BEAM OPTION

- ◆ After Booster replacement in Phase II beam intensity increase up to 2.5 × 10²¹ pot/year (60% increase from Phase I with MI short cycle)
- + High-energy LBNF beam option optimized for ν_{τ} appearance in FD:
 - Conceivable a dedicated run (1-2 years) at a later Phase II stage;
 - Change of beam spectrum would affect both FD and ND in DUNE.

⇒ High-energy data can significantly expand SAND physics reach

MINIMAL RUN TIME AFTER TARGET CHANGE

 "Solid" hydrogen target required at all times to constrain systematics: keep all graphite targets in Phase II (~600 kg)

◆ Replace some of the 70 CH₂ targets in Phase II keeping average density ≤0.18 g/cm³
 ⇒ Realistic fiducial mass of new targets from 200 kg to 1 ton

Mass	CP optimized bear	$m~(2.5{ imes}10^{21}$ pot)	$ u_{ au}$ optimized beam (2.5 $ imes$ 10 21 pot)		
(isoscalar)	$ u_{\mu}$ CC FHC	$ar{ u}_{\mu}$ CC RHC	$ u_{\mu}$ CC FHC	$\bar{ u}_{\mu}$ CC RHC	
200 kg	666,000	224,000	1,589,000	517,000	
500 kg	1,665,000	560,000	3,972,000	1,294,000	
1 ton	3,330,000	1,120,000	7,944,000	2,588,000	

 \implies In less than one year enough statistics for sensible physics measurements

GENERAL PURPOSE FACILITY

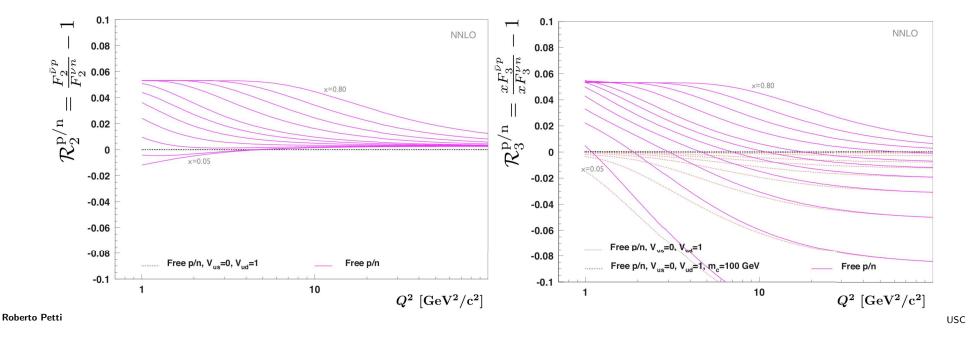
 SAND in Phase II allows to probe a variety of nuclei with excellent control of systematic uncertainties (scales, flux, & nuclear effects)

⇒ General purpose (anti)neutrino physics facility

• Rich physics program complementary to fixed-target, collider and nuclear physics efforts:

- Measurement of $\sin^2 \theta_W$ and electroweak physics;
- Precision tests of isospin physics & sum rules (Adler, GLS);
- Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
- Studies of QCD and structure of nucleons and nuclei;
- Precision tests of the structure of the weak current: PCAC, CVC;
- Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc.
- Precision measurements as probes of New Physics (BSM);
- Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....

 \implies Hundreds of diverse physics topics offering insights on various fields

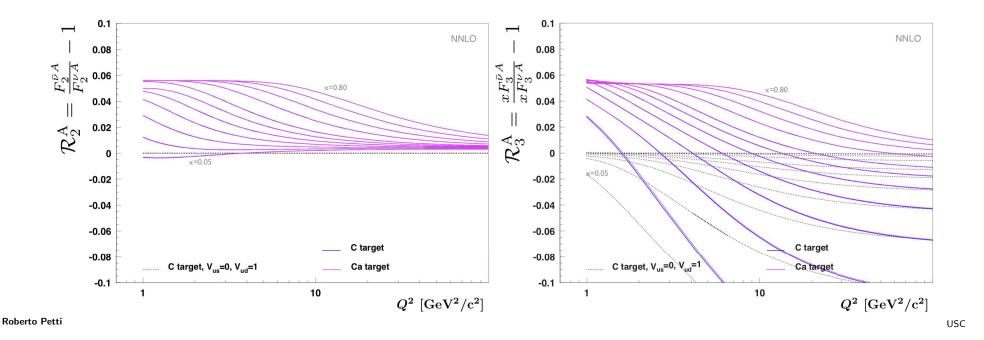

Measurements can concurrently constrain LBL systematics for both Ar and non-Ar FD

FREE NEUTRON TARGET

- Structure function $F^{\nu n}$ directly related to $F^{\bar{\nu}p}$ by ISOSPIN SYMMETRY
- Correction factors:

$$\mathcal{R}_2^{p/n}(x,Q^2) = \frac{F_2^{\nu p}(x,Q^2)}{F_2^{\nu n}(x,Q^2)} - 1; \qquad \mathcal{R}_3^{p/n}(x,Q^2) = \frac{xF_3^{\nu p}(x,Q^2)}{xF_3^{\nu n}(x,Q^2)} - 1$$

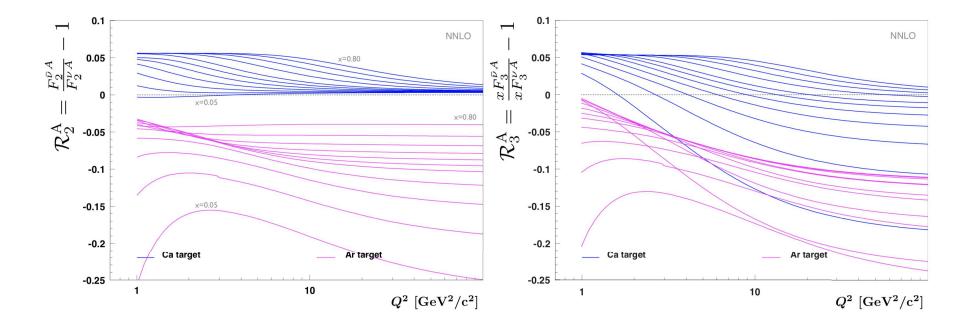
- Quark mixing (CKM): sensitivity to V_{us} and V_{ud} ;
- Strange sea quarks and charm production: sensitivity to $\boxed{m_c}$ and strange sea asymmetry.
- \implies Self-determined d/u and s (synergy with 12 GeV JLab program)



TESTS OF ISOSPIN SYMMETRY

♦ Isospin symmetry can be verified with ISOSCALAR TARGET :

$$\mathcal{R}_{2}^{\mathcal{A}}(x,Q^{2}) = \frac{F_{2}^{\bar{\nu}A}(x,Q^{2})}{F_{2}^{\nu A}(x,Q^{2})} - 1; \qquad \mathcal{R}_{3}^{\mathcal{A}}(x,Q^{2}) = \frac{xF_{3}^{\bar{\nu}A}(x,Q^{2})}{xF_{3}^{\nu A}(x,Q^{2})} - 1$$


- Exploit C target in "solid" hydrogen: validation of $\mathcal{R}_{2,3}^{p/n}$ corrections to free neutrons;
- Search for direct violations of the isospin (charge) symmetry from deviations in $\mathcal{R}_{2,3}^A$.
- + If anomalous deviations in $\mathcal{R}_{2,3}^{A}$ independent measurement with isoscalar ⁴⁰Ca target

♦ Comparison of Ca and Ar can probe FLAVOR DEPENDENCE

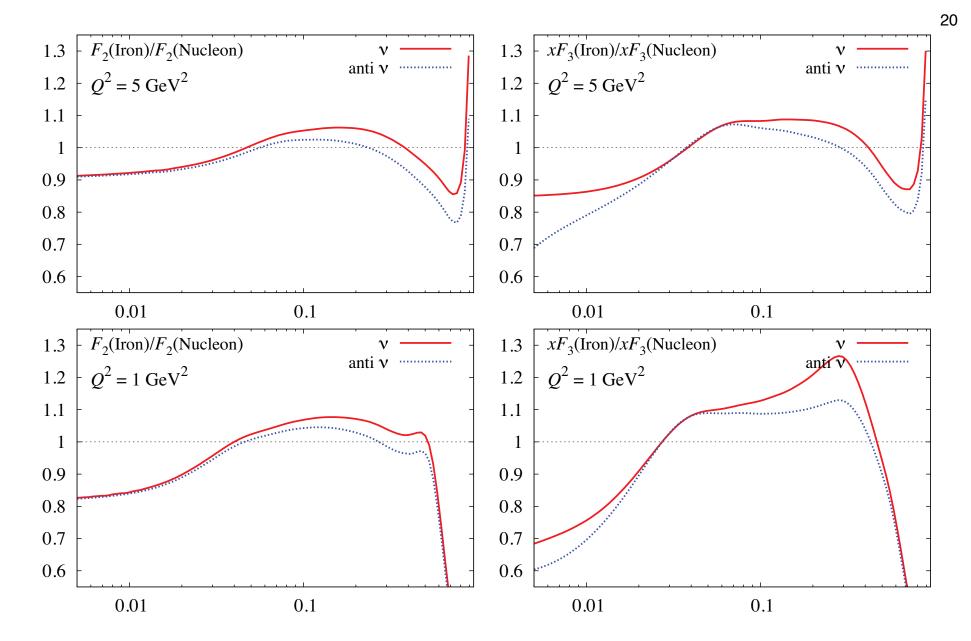
of nuclear effects:

- Same A = 40: neutron excess in Ar $\beta = (Z-N)/A \sim -0.1$, Ca mostly isoscalar $\beta \sim -2.6 \times 10^{-3}$;
- Insights on physics mechanisms responsible for isovector effects at both nucleon and nuclear level.
- Isovector effects relevant for LBL oscillation measurements with non-isoscalar nuclei: e.g. DUNE exploits tiny differences between ν and ν̄ CC on ⁴⁰Ar

USC

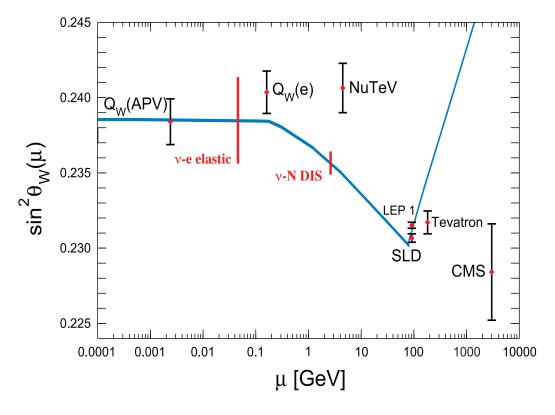
NUCLEAR MODIFICATIONS OF BOUND NUCLEONS

• Availability of ν -H & $\bar{\nu}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:


$$R_{2,3}^{A}(x,Q^{2}) = \frac{F_{2,3}^{\nu A}}{ZF_{2,3}^{\nu p} + (A-Z)F_{2,3}^{\nu n}} \sim \frac{F_{2,3}^{\nu A}}{ZF_{2,3}^{\nu H} + (A-Z)F_{2,3}^{\bar{\nu} H}}(x,Q^{2})$$

- Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications (W^{\pm}/Z helicity, C-parity, Isospin);
- Effect of the axial-vector current.

 \blacklozenge Study nuclear modifications to parton distributions in a broad range of x and Q^2 .


- Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions $F_2, xF_3, R = F_L/F_T$.
- Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.

⇒ Synergy with Heavy Ion and EIC physics programs for cold nuclear matter effects.

ELECTROWEAK MEASUREMENTS

- Complementarity with colliders & low-energy measurements:
 - <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole);
 - Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
 - Single experiment to directly check the running of $\sin^2 \theta_W$;
 - Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range.

• Different independent channels:

•
$$\mathcal{R}^{\nu} = \frac{\sigma_{\mathrm{NC}}^{\nu}}{\sigma_{\mathrm{CC}}^{\nu}}$$
 in ν -N DIS (~0.35%)

•
$$\mathcal{R}_{\nu e} = rac{\sigma_{
m NC}^{
u}}{\sigma_{
m NC}^{
u}}$$
 in u -e⁻ NC elastic (~1%)

- NC/CC ratio $(\nu p \rightarrow \nu p)/(\nu n \rightarrow \mu^- p)$ in (quasi)-elastic interactions
- NC/CC ratio $ho^0/
 ho^+$ in coherent processes
- \implies Combined EW fits
- Achievable sensitivity depending upon HE beam exposure

21

SUMMARY

- ♦ SAND well understood detector from DUNE Phase I:
 - Collect $\sim 6.4 \times 10^{21}$ pot of data from Day-1 in DUNE Phase I;
 - Use of data calibration samples (H, V⁰, etc.) to constrain systematic uncertainties $\leq 2\%$.
- ♦ Phase II opportunities with SAND:
 - Increase of statistics for measurements of rare processes & searches for BSM physics (statistics limited in Phase I);
 - Change of targets in STT allowing the probe of a broad range of different nuclei;
 - Change of STT average density within $0.005 \le \rho \le 0.18$ g/cm³ for cross-checks;
 - Change of beam spectrum with high-energy beam option optimized for ν_{τ} apperance.
- SAND facility for precision measurements of fundamental interactions & structure of nucleons and nuclei complementary to fixed-target, collider, and nuclear physics efforts
 Hundreds of diverse physics topics offering insights on various fields
- SAND can constrain LBL systematics for both Ar and non-Ar FD options from $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ fluxes and nuclear effects in Ar/C/O

Backup slides