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Observing Cadence

J. Sobrin, AJA, et al.

(2106.11202)

• “Fields” chosen to 
observe based on a 
mix of scientific and 
technical/practical 
factors, then split into 
“subfields” with narrow 
range of elevation


• Raster scan at 
constant elevation, 
then step in elevation 
until subfield is 
covered.


• Observing one subfield 
takes ~2 hours. Repeat 
for other subfields 24/7 
for 9-11 months per 
year, integrating down 
coadded noise level. W. Quan



A. Bender, AJA, W. Quan



SPT-3G Science
• Core SPT-3G science is the CMB, but full range of topics is 

extremely broad. Heterogeneous analyses require different 
suites of simulations:


• Primary CMB power spectra (2101.01684, 2212.05642, 
updates coming soon…)


• Kinematic Sunyaev-Zeldovich effect (2207.11937)


• Survey of mm-wave astrophysical transients (2103.06166)


• Mm-wave measurements of asteroids (2202.01406)


• Constraints on axion dark matter (2203.16567) 


• Gravitational lensing of the CMB (coming soon…)


• SZ-selected galaxy cluster catalog (coming soon…)


• Constraints on inflationary B-modes (coming soon…)


• Polarization properties of South Pole atmosphere (coming 
soon…)


• Many more analyses in progress!
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FIG. 2. SPT-3G 2018 150GHz temperature (top), Stokes Q (middle), and Stokes U (bottom) maps. Note the factor of ten
di↵erence in color scale between temperature and polarization maps. The data have been filtered to remove features larger
than ⇠ 0.5�, and the polarization maps have been smoothed by a 60 FWHM Gaussian.

Dutcher, et al., (2101.01684)
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General Remarks
• SPT does not use a single suite of end-to-end simulations for all analyses. E.g. 

Filtering settings will be different for different analyses, so this does not make sense.


• Full-scale simulations usually only really make sense up to map-level. Parameter 
constraints can be calculated directly using power spectrum information without 
reference to maps or their simulations.


• Auxiliary measurements (e.g. beams) incorporated into bandpower covariance 
matrix.


• Instrumental systematics that are small in magnitude or difficult to model are 
checked with null tests and ignored.


• Simulation frameworks and tools are standardized and fairly easy to use. People 
make their own simulations, but they do so with a common framework for mock 
observation, noise realizations, etc. 



Software Notes
• Analysis and simulations software framework, spt3g_software, written in 

mix of python (interface) and C++ (for bits that need to be efficient).


• Software written specifically for SPT-3G, based core pieces of IceTray, the 
IceCube analysis software. “Events” are replaced by “scans”.


• Subset of spt3g_software is publicly available on GitHub, targeted for CMB-
S4 and future CMB experiments:


• https://github.com/CMB-S4/spt3g_software


• HEP-style stupidly parallel jobs for simulations and mapmaking run on OSG / 
MWT2 (memory requirement ~ 2-4 GB / job).

https://github.com/CMB-S4/spt3g_software


Highly Simplified Power Spectrum Analysis Flow
1. Compress raw data into a map (several different ways to do this, e.g. MASTER (astro-ph/0105302) vs. maximum likelihood):


A. Observe the sky: 15,000 timestreams (“TOD”).


B. Filter each TOD until noise is approximately white in time-domain.


C. Bin timestream samples into map, using telescope pointing information, with inverse-variance weighting based on TOD noise 
spectrum, rough temperature calibration


2. Estimate power spectra:


A. TOD filtering removes power, biases power spectrum in a non-isotropic way (i.e. scan strategy means that atmospheric noise is 
primarily at low kx). Estimate as Fourier-space “transfer function” from simulations.


B. Incomplete sky coverage acts as window function, smears out power between independent modes. Map projection also induces 
small bias. Calculate analytically or simulate by brute force.


C. Beam calibration using observations of planets (large scales) and point sources (small scales).


D. Calculate debiased power spectra (“bandpowers”):
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constructed as described above yield estimates of the
true C` that have been biased by TOD- and map-level
processing. These biased or pseudo-C`, denoted by C̃`,
and the true C` are related via

hC̃`i =
X

`0

M``0F`0B
2

`0hC`0i , (5)

in which the brackets denote ensemble averages, B`

describes the e↵ects of the instrument beam and map
pixelization, F` is a transfer function encapsulating the
e↵ects of TOD filtering, and M``0 is a matrix describing
the mixing of power that results from incomplete sky
coverage.

Following H02, we introduce the binning operator
Pb` and its inverse operation Q`b: if we write the
binned equivalent of Eq. 5 utilizing the shorthand
K``0 ⌘ M``0F`0B

2

`0 and Kbb0 ⌘ Pb`K``0Q`0b0 , then an
unbiased estimator of the true power spectrum can be
calculated from the pseudo spectra via

cCb = K
�1

bb0 Pb0`0C̃` . (6)

To compare the unbinned theory C
th

` to our bandpowers,
we compute the binned theory spectra as Cth

b = Wb`C
th

` ,
where Wb` are the bandpower window functions defined
as

Wb` = K
�1

bb0 Pb0`0K`0` . (7)

C. Mask and Mode-Coupling

Prior to computing their Fourier transforms, we
multiply the maps by an apodization mask W to
smoothly roll-o↵ the map edges to zero and remove
excess power from bright point sources. The apodization
mask is generated in much the same manner as in H18,
using the same mask for all map bundles across all
frequency bands. First, a binary mask is created for
each bundle by smoothing the coadded bundle weights
with a 50 Gaussian, then setting to zero any pixels
with a weight below 30% of the median map weight.
The intersection of all the bundle masks is then edge-
smoothed with a 300 cosine taper. Point sources detected
above 50mJy at 150GHz are masked with a 50 radius
disk (the same size mask used during TOD processing),
and the cutouts edge-smoothed with a 100 cosine taper.
The e↵ective area of the final mask, defined as

P
W2

A↵

where A↵ = 4 arcmin2 is the area of each pixel, is equal
to 1614 deg2. This area is larger than the stated survey
size as a result of the inclusion of lower-weight regions
along the map boundaries.

Applying a real-space apodization mask, or imposing
any survey boundary, convolves the Fourier transform of
the e↵ective mask with that of the on-sky signal, coupling
power between formerly independent `-modes. This
e↵ect is encapsulated in the mode-coupling matrix M``0 .
Previous SPT analyses have used an analytic calculation

of the mode-coupling matrix in the flat-sky regime, as
derived in H02 for temperature and the Appendix of [42,
hereafter C15] for polarization (for notational simplicity
we omit the XY superscript on M``0 , though separate
matrices for TE and EE are used in the analysis). In
H18 this calculation was further verified for the input
range 0 < ` < 500 with the use of curved-sky HEALPix3

[49, 50] simulations.
Here we employ an alternate means of simulating

M``0 that additionally captures distortions due to the
map projection. A set of HEALPix skies are generated
in a similar manner as in H18, with each realization
formed from an input spectrum set to zero outside of a
selected �` = 5 bin; however, here the curved-sky maps
are then reprojected to our flat map projection before
applying the apodization mask. The power spectrum is
then computed in the usual manner, revealing to which
multipoles the �` = 5 input power has been mixed. One
full realization of the mode-coupling matrix requires 640
individual simulations to cover the range 0 < ` < 3200
in increments of �` = 5, and 150 such realizations are
averaged to obtain the final mode-coupling matrix M``0 .

D. Transfer Function

The filter transfer function F` captures the e↵ects of
the filtering steps discussed in §III C. F` is obtained
through simulations, discussed further in §IVD1. In
brief, a known input spectrum C

th

` is used to generate
O(100s) of sky realizations and simulated TOD, to which
are then applied the same filtering steps as on the real
data. The output spectra are then compared to the input
spectra to obtain the e↵ects of TOD filtering.
Solving Eq. 5 for F` directly would necessitate invert-

ing M``0 , which may be ill-conditioned. Instead, we
iteratively solve for F` using the method prescribed in
H02:

F
(0)

` =
hC̃

sim

` i

w2B
2

`C
th

`

,

F
(i+1)

` = F
(i)
` +

hC̃
sim

` i �M``0F
(i)
` B

2

`C
th

`

w2B
2

`C
th

`

,

(8)

where w2 ⌘
1

⌦

R
d
2
rW2 and ⌦ is the area of the map in

steradians. We find three iterations su�cient to achieve
a stable result.
The iterative approach is unstable for the TE power

spectrum due to zero crossings, so instead we use the
geometric mean of the TT and EE transfer functions
in the same manner as C15 and H18. For cross-
frequency power spectra, a transfer function is computed
directly for each ⌫i ⇥ ⌫j spectrum. The TE and EE

transfer functions for 150GHz are shown in Figure 5,

3 http://healpix.sf.net/
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Highly Simplified Power Spectrum Analysis Flow
3. Estimate combined bandpower covariance matrix.


A. Noise covariance matrix.


B. Signal covariance matrix.


4. Jackknife tests for instrumental systematics:


A. Difference subsets of the data that have identical CMB signal and check that result is compatible with 
noise. Estimate noise “expectation spectra” from simulations.


5. Estimate cosmological parameters from bandpower covariance:


A. CAMB or emulator calculates CMB power spectra from input cosmological parameters that we want to 
constrain.


B. Foreground models connect nuisance parameters to power spectra.



Highly Simplified Power Spectrum Analysis Flow
1. Compress raw data into a map (several different ways to do this, e.g. MASTER (astro-ph/0105302) vs. maximum likelihood):


A. Observe the sky: 15,000 timestreams (“TOD”).


B. Filter each TOD until noise is approximately white in time-domain.


C. Bin timestream samples into map, using telescope pointing information, with inverse-variance weighting based on TOD noise 
spectrum, rough temperature calibration


2. Estimate power spectra:


1. TOD filtering removes power, biases power spectrum in a non-isotropic way (i.e. scan strategy means that atmospheric noise is 
primarily at low kx). Estimate as Fourier-space “transfer function” from simulations.


2. Incomplete sky coverage acts as window function, smears out power between independent modes. Map projection also induces 
small bias. Calculate analytically or simulate by brute force.


3. Beam calibration using observations of planets (large scales) and point sources (small scales).


4. Calculate debiased power spectra (“bandpowers”):

“Mock observations”
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steradians. We find three iterations su�cient to achieve
a stable result.
The iterative approach is unstable for the TE power

spectrum due to zero crossings, so instead we use the
geometric mean of the TT and EE transfer functions
in the same manner as C15 and H18. For cross-
frequency power spectra, a transfer function is computed
directly for each ⌫i ⇥ ⌫j spectrum. The TE and EE
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Mock Observations
• Generate fake realizations of CMB skies based Planck 

cosmology, possibly including point sources and 
foregrounds.


• “Mock observe” these fake skies by using the real 
pointing information of every detector during the 
observing season to generate a fake TOD for every 
detector.


• Apply the same filtering procedure used on the real data 
to the mock observations, bin into maps per observation. 
Coadd maps if desired.


• Result is noise-free coadded maps of the entire 
experiment but for different CMB realizations. 
Comparison of real CMB power spectra to mock spectra 
provides estimate of the “transfer function”. 
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FIG. 5. Filter transfer functions for 150GHz TE and EE

power spectra, computed using 250 TOD simulations of the
full SPT-3G 2018 dataset. The di↵erence between the TE and
EE transfer functions is caused by the common-mode filter.

with similar results found for 95GHz and 220GHz. The
di↵erence between the TE and EE transfer functions
primarily arises from the CM filter, which removes large-
scale power from temperature while preserving it in
polarization. This also causes 10% di↵erences in F`

between the three frequency bands for ` < 1000, which
diminishes to < 1% at higher multipoles.

1. Simulations

To create the simulations used for recovering the
e↵ect of TOD- and map-level processing on the
data, we first generate 250 Gaussian realizations of
the CMB described by the best-fit ⇤CDM model
to the base plikHM TTTEEE lowl lowE lensing

Planck data set [26]. To these we add foreground
contributions using two methods. For foreground
components expected to be roughly Gaussian-distributed
(such as the thermal and kinetic SZ e↵ects), we create
Gaussian realizations of power spectra from [51]. These
realizations are correlated between frequencies. We also
add Poisson-distributed foregrounds according to source
population models from [52] for radio galaxies and from
[53] for dusty star-forming galaxies, with polarization
fractions from [9] and flux-frequency scaling relations
from [54]. We neglect Galactic foregrounds for these
simulations, as the expected polarized power from dust
within our survey region is 1–2 orders of magnitude
smaller than the E-mode signal over the multipoles and
observing frequencies considered here (Galactic dust is
accounted for in the likelihood; see §VI). The TE power
for all simulated foregrounds is set to zero. These
simulated components are then combined in multipole
space and multiplied by a Gaussian approximation

of the SPT-3G beam (see §IVE), with FWHMs of
1.70, 1.40, 1.20 at 95, 150, 220GHz, respectively, before
generating real-space HEALPix sky realizations. These
noiseless mock skies are then used along with recorded
telescope pointing information from every 2018 subfield
observation to generate simulated detector TOD, which
are then processed using the same detector cuts and
filtering as applied to the real data. The resulting “mock
observations” are then bundled and analyzed in exactly
the same manner as the real data.

E. Beam

The beam describes the instrument response to a point
source. The maps produced are a convolution of the
beam with the underlying sky, equivalently described as
a multiplication in Fourier space by the beam window
function B`. B` is estimated in a similar manner to
the composite beam analyses in [41, 42, 55], using point
sources in the 1500 deg2 field and five dedicated Mars
observations taken during 2018.
The Mars data are convolved with a Gaussian estimate

of the telescope pointing jitter (approximately 12” rms)
derived from the fitted locations of point sources in
individual observations. The brightness of Mars produces
a high signal-to-noise beam template out to tens of
arcminutes away from the peak response; however, we
observe significant evidence for detector nonlinearity at
the peak response in the planet scans. To avoid this,
the Mars maps are first produced individually for left-
going and right-going scans, and any data taken in a scan
after Mars passes within ⇠ 1 beam FWHM is masked,
as the falling edge of the beam response is most prone to
contamination from detector nonlinearity.
The hole at the location of the peak planet response

is filled in by stitching a coadd of point sources that
has been convolved with the Mars disk. The stitching
operation simultaneously fits a relative scale and o↵set
between the two beam observations using an annular
region where both measurements have high signal-to-
noise. B` is then taken to be the square-root of the
azimuthal average of the 2D power spectrum of the
composite map, after correcting for the planet disk and
pixel window functions. The normalization of the beam
response is defined by the map calibration procedure
described in §IVF 1.
B` and uncertainties for the three frequencies are

shown in Figure 6. Over the range of multipoles relevant
for this analysis, the fractional beam uncertainty is less
than 1.5%. The beam covariance is derived from a set
of alternate B` curves produced by varying the subfield
from which the field sources are drawn, varying which of
the five planet observations is used, and sampling from
the nominal covariance of the stitching scaling and o↵set
parameters. The beam covariance is then added to the
bandpower covariance matrix, discussed in §IVH.



Highly Simplified Power Spectrum Analysis Flow
1. Compress raw data into a map (several different ways to do this, e.g. MASTER (astro-ph/0105302) vs. maximum likelihood):
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spectrum, rough temperature calibration


2. Estimate power spectra:


1. TOD filtering removes power, biases power spectrum in a non-isotropic way (i.e. scan strategy means that atmospheric noise is 
primarily at low kx). Estimate as Fourier-space “transfer function” from simulations.


2. Incomplete sky coverage acts as window function, smears out power between independent modes. Map projection also induces 
small bias. Calculate analytically or simulate by brute force.


3. Beam calibration using observations of planets (large scales) and point sources (small scales).


4. Calculate debiased power spectra (“bandpowers”):
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constructed as described above yield estimates of the
true C` that have been biased by TOD- and map-level
processing. These biased or pseudo-C`, denoted by C̃`,
and the true C` are related via

hC̃`i =
X

`0

M``0F`0B
2

`0hC`0i , (5)

in which the brackets denote ensemble averages, B`

describes the e↵ects of the instrument beam and map
pixelization, F` is a transfer function encapsulating the
e↵ects of TOD filtering, and M``0 is a matrix describing
the mixing of power that results from incomplete sky
coverage.

Following H02, we introduce the binning operator
Pb` and its inverse operation Q`b: if we write the
binned equivalent of Eq. 5 utilizing the shorthand
K``0 ⌘ M``0F`0B

2

`0 and Kbb0 ⌘ Pb`K``0Q`0b0 , then an
unbiased estimator of the true power spectrum can be
calculated from the pseudo spectra via

cCb = K
�1

bb0 Pb0`0C̃` . (6)

To compare the unbinned theory C
th

` to our bandpowers,
we compute the binned theory spectra as Cth

b = Wb`C
th

` ,
where Wb` are the bandpower window functions defined
as

Wb` = K
�1

bb0 Pb0`0K`0` . (7)

C. Mask and Mode-Coupling

Prior to computing their Fourier transforms, we
multiply the maps by an apodization mask W to
smoothly roll-o↵ the map edges to zero and remove
excess power from bright point sources. The apodization
mask is generated in much the same manner as in H18,
using the same mask for all map bundles across all
frequency bands. First, a binary mask is created for
each bundle by smoothing the coadded bundle weights
with a 50 Gaussian, then setting to zero any pixels
with a weight below 30% of the median map weight.
The intersection of all the bundle masks is then edge-
smoothed with a 300 cosine taper. Point sources detected
above 50mJy at 150GHz are masked with a 50 radius
disk (the same size mask used during TOD processing),
and the cutouts edge-smoothed with a 100 cosine taper.
The e↵ective area of the final mask, defined as

P
W2

A↵

where A↵ = 4 arcmin2 is the area of each pixel, is equal
to 1614 deg2. This area is larger than the stated survey
size as a result of the inclusion of lower-weight regions
along the map boundaries.

Applying a real-space apodization mask, or imposing
any survey boundary, convolves the Fourier transform of
the e↵ective mask with that of the on-sky signal, coupling
power between formerly independent `-modes. This
e↵ect is encapsulated in the mode-coupling matrix M``0 .
Previous SPT analyses have used an analytic calculation

of the mode-coupling matrix in the flat-sky regime, as
derived in H02 for temperature and the Appendix of [42,
hereafter C15] for polarization (for notational simplicity
we omit the XY superscript on M``0 , though separate
matrices for TE and EE are used in the analysis). In
H18 this calculation was further verified for the input
range 0 < ` < 500 with the use of curved-sky HEALPix3

[49, 50] simulations.
Here we employ an alternate means of simulating

M``0 that additionally captures distortions due to the
map projection. A set of HEALPix skies are generated
in a similar manner as in H18, with each realization
formed from an input spectrum set to zero outside of a
selected �` = 5 bin; however, here the curved-sky maps
are then reprojected to our flat map projection before
applying the apodization mask. The power spectrum is
then computed in the usual manner, revealing to which
multipoles the �` = 5 input power has been mixed. One
full realization of the mode-coupling matrix requires 640
individual simulations to cover the range 0 < ` < 3200
in increments of �` = 5, and 150 such realizations are
averaged to obtain the final mode-coupling matrix M``0 .

D. Transfer Function

The filter transfer function F` captures the e↵ects of
the filtering steps discussed in §III C. F` is obtained
through simulations, discussed further in §IVD1. In
brief, a known input spectrum C

th

` is used to generate
O(100s) of sky realizations and simulated TOD, to which
are then applied the same filtering steps as on the real
data. The output spectra are then compared to the input
spectra to obtain the e↵ects of TOD filtering.
Solving Eq. 5 for F` directly would necessitate invert-

ing M``0 , which may be ill-conditioned. Instead, we
iteratively solve for F` using the method prescribed in
H02:
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(8)

where w2 ⌘
1

⌦

R
d
2
rW2 and ⌦ is the area of the map in

steradians. We find three iterations su�cient to achieve
a stable result.
The iterative approach is unstable for the TE power

spectrum due to zero crossings, so instead we use the
geometric mean of the TT and EE transfer functions
in the same manner as C15 and H18. For cross-
frequency power spectra, a transfer function is computed
directly for each ⌫i ⇥ ⌫j spectrum. The TE and EE

transfer functions for 150GHz are shown in Figure 5,
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Highly Simplified Power Spectrum Analysis Flow
1. Compress raw data into a map (several different ways to do this, e.g. MASTER (astro-ph/0105302) vs. maximum likelihood):


A. Observe the sky: 15,000 timestreams (“TOD”).


B. Filter each TOD until noise is approximately white in time-domain.


C. Bin timestream samples into map, using telescope pointing information, with inverse-variance weighting based on TOD noise 
spectrum, rough temperature calibration


2. Estimate power spectra:


1. TOD filtering removes power, biases power spectrum in a non-isotropic way (i.e. scan strategy means that atmospheric noise is 
primarily at low kx). Estimate as Fourier-space “transfer function” from simulations.


2. Incomplete sky coverage acts as window function, smears out power between independent modes. Map projection also induces 
small bias. Calculate analytically or simulate by brute force.


3. Beam calibration using observations of planets (large scales) and point sources (small scales).


4. Calculate debiased power spectra (“bandpowers”):
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and the true C` are related via
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`0hC`0i , (5)

in which the brackets denote ensemble averages, B`

describes the e↵ects of the instrument beam and map
pixelization, F` is a transfer function encapsulating the
e↵ects of TOD filtering, and M``0 is a matrix describing
the mixing of power that results from incomplete sky
coverage.

Following H02, we introduce the binning operator
Pb` and its inverse operation Q`b: if we write the
binned equivalent of Eq. 5 utilizing the shorthand
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`0 and Kbb0 ⌘ Pb`K``0Q`0b0 , then an
unbiased estimator of the true power spectrum can be
calculated from the pseudo spectra via

cCb = K
�1

bb0 Pb0`0C̃` . (6)

To compare the unbinned theory C
th

` to our bandpowers,
we compute the binned theory spectra as Cth

b = Wb`C
th

` ,
where Wb` are the bandpower window functions defined
as

Wb` = K
�1

bb0 Pb0`0K`0` . (7)

C. Mask and Mode-Coupling

Prior to computing their Fourier transforms, we
multiply the maps by an apodization mask W to
smoothly roll-o↵ the map edges to zero and remove
excess power from bright point sources. The apodization
mask is generated in much the same manner as in H18,
using the same mask for all map bundles across all
frequency bands. First, a binary mask is created for
each bundle by smoothing the coadded bundle weights
with a 50 Gaussian, then setting to zero any pixels
with a weight below 30% of the median map weight.
The intersection of all the bundle masks is then edge-
smoothed with a 300 cosine taper. Point sources detected
above 50mJy at 150GHz are masked with a 50 radius
disk (the same size mask used during TOD processing),
and the cutouts edge-smoothed with a 100 cosine taper.
The e↵ective area of the final mask, defined as
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where A↵ = 4 arcmin2 is the area of each pixel, is equal
to 1614 deg2. This area is larger than the stated survey
size as a result of the inclusion of lower-weight regions
along the map boundaries.

Applying a real-space apodization mask, or imposing
any survey boundary, convolves the Fourier transform of
the e↵ective mask with that of the on-sky signal, coupling
power between formerly independent `-modes. This
e↵ect is encapsulated in the mode-coupling matrix M``0 .
Previous SPT analyses have used an analytic calculation

of the mode-coupling matrix in the flat-sky regime, as
derived in H02 for temperature and the Appendix of [42,
hereafter C15] for polarization (for notational simplicity
we omit the XY superscript on M``0 , though separate
matrices for TE and EE are used in the analysis). In
H18 this calculation was further verified for the input
range 0 < ` < 500 with the use of curved-sky HEALPix3

[49, 50] simulations.
Here we employ an alternate means of simulating

M``0 that additionally captures distortions due to the
map projection. A set of HEALPix skies are generated
in a similar manner as in H18, with each realization
formed from an input spectrum set to zero outside of a
selected �` = 5 bin; however, here the curved-sky maps
are then reprojected to our flat map projection before
applying the apodization mask. The power spectrum is
then computed in the usual manner, revealing to which
multipoles the �` = 5 input power has been mixed. One
full realization of the mode-coupling matrix requires 640
individual simulations to cover the range 0 < ` < 3200
in increments of �` = 5, and 150 such realizations are
averaged to obtain the final mode-coupling matrix M``0 .

D. Transfer Function

The filter transfer function F` captures the e↵ects of
the filtering steps discussed in §III C. F` is obtained
through simulations, discussed further in §IVD1. In
brief, a known input spectrum C

th

` is used to generate
O(100s) of sky realizations and simulated TOD, to which
are then applied the same filtering steps as on the real
data. The output spectra are then compared to the input
spectra to obtain the e↵ects of TOD filtering.
Solving Eq. 5 for F` directly would necessitate invert-

ing M``0 , which may be ill-conditioned. Instead, we
iteratively solve for F` using the method prescribed in
H02:
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where w2 ⌘
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rW2 and ⌦ is the area of the map in

steradians. We find three iterations su�cient to achieve
a stable result.
The iterative approach is unstable for the TE power

spectrum due to zero crossings, so instead we use the
geometric mean of the TT and EE transfer functions
in the same manner as C15 and H18. For cross-
frequency power spectra, a transfer function is computed
directly for each ⌫i ⇥ ⌫j spectrum. The TE and EE

transfer functions for 150GHz are shown in Figure 5,
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Beam Estimation
• Beam is estimated from planet 

observations (e.g. Mars in 2101.01684) 
for large scales, and many point 
sources for small scales. Maps are 
stitched together in real space.


• The beam is estimated by the square 
root of the azimuthal average of the 2D 
power spectrum of the composite 
map.


• Uncertainty is estimated by jackknife 
resampling to construct a beam 
covariance matrix, which is added with 
the main bandpower covariance.

10

FIG. 6. One-dimensional multipole-space representation
of the measured instrument beam, B`, with uncertainties
indicated by the shaded regions. The data are normalized
to unity at ` = 800.

F. Absolute Calibration

1. Subfield calibration

As this work references separate HII regions for
calibrating di↵erent halves of the survey field, we
calculate and apply a temperature calibration factor for
each subfield individually before coadding observations
from the four subfields into a single map. To set the
individual temperature calibrations, we compute cross-
spectra between our subfield temperature maps and the
Planck PR3 maps4 of the nearest frequency channel,
using 100GHz, 143GHz, and 217GHz for our 95GHz,
150GHz, and 220GHz bands, respectively.

The Planck maps are mock-observed with TOD
filtering identical to the real data, though with larger
masked regions around point sources to account for the
larger Planck beam. An apodization mask with larger
point source cut-outs is applied to both the mock-Planck
and SPT maps, and the corresponding mode-coupling
matrix M

ps

`,`0 is used. We compute the Planck -only
and SPT-only power spectra using cross-spectra between
half-depth maps from the respective experiments, and we
compute the cross-spectra between the two experiments
using full-depth maps. We divide out the binned mode-
mixing matrix to account for the cut sky and source
masking, and compute the binned ratio of the power
spectra

✏b =
Pb,` B

Planck

` (Pb,`M
ps

`,`0Q`0,b0)�1
D̃

SPT1⇥SPT2
b0

Pb,` B
SPT

` (Pb,`M
ps

`,`0Q`0,b0)�1 D̃
SPT⇥Planck

b0
. (9)

4 https://pla.esac.esa.int/

The average of this ratio over 400  `  1500 is
used to set the relative temperature calibration between
subfields. All subfield calibration factors are within . 7%
of unity, consistent with the expected accuracy of the
calibration procedure described in §III B.
We establish uncertainties on the above ratio by com-

bining a single ⇤CDM sky realization with FFP10 noise
simulations for Planck and sign-flip noise realizations for
SPT, generated by coadding real SPT-3G data maps
with random signs. We compute several similar ratios
using other combinations of Planck and SPT data to
form the cross-spectra as a data systematics and pipeline
consistency check. We find agreement to . 1% in
the ratios across di↵erent data spectra inputs over the
multipole range considered. The beam measured in this
manner also serves as cross-check of our low-` beams;
while the results are consistent with the position-space
measurement, they are less sensitive as a result of the
Planck beam size and map noise, and are therefore not
used to constrain the shape of the beam response.

2. Full-field calibration

We determine the final calibration of the SPT-3G
temperature and E-mode maps by comparing the mea-
sured SPT-3G TT and EE power spectra to the full-sky,
foreground-corrected Planck power spectra. Note that
while the map calibration described above is expected
to be accurate at the percent level, that procedure
does not address the absolute amplitude of the Q and
U polarization maps. This motivates the EE power
spectrum comparison. While not strictly necessary, we
also adjust the temperature calibration to be based on
the power spectrum comparison for symmetry.
We calculate calibration factors for each frequency

band for the temperature (e.g., T
95GHz

cal
) and E-mode

(e.g., E 95GHz

cal
) maps. The cross-spectra calibration fac-

tors are then TE / (TcalEcal) and EE / (EcalEcal). The
calibration factors are constructed based on comparing
the Planck combined CMB-only power spectra to the
SPT-3G 95⇥95, 150⇥150, and 220⇥220 bandpowers over
the angular multipole range 300  `  1500 using the
Planck bin-width of �` = 30. We apply the SPT-3G
bandpower window functions to the unbinned Planck
spectra for this comparison. For temperature, we also
account for foreground contamination by subtracting
from the SPT-3G bandpowers the best-fit foreground
model from [3] with additional radio galaxy power from
the di↵erent point source mask threshold calculated
according to the model in [52]. The foreground
corrections are negligible for the EE spectra. We account
for the uncertainties on the bandpower measurements
in this comparison using the covariance described in
§IVH as well as the uncertainties on the Planck spectra.
We also include the correlated uncertainties in the
calibration factors due to the overall Planck absolute
calibration uncertainty (taken to be 0.25% at the map
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1. Compress raw data into a map (several different ways to do this, e.g. MASTER (astro-ph/0105302) vs. maximum likelihood):


A. Observe the sky: 15,000 timestreams (“TOD”).


B. Filter each TOD until noise is approximately white in time-domain.


C. Bin timestream samples into map, using telescope pointing information, with inverse-variance weighting based on TOD noise 
spectrum, rough temperature calibration


2. Estimate power spectra:


1. TOD filtering removes power, biases power spectrum in a non-isotropic way (i.e. scan strategy means that atmospheric noise is 
primarily at low kx). Estimate as Fourier-space “transfer function” from simulations.


2. Incomplete sky coverage acts as window function, smears out power between independent modes. Map projection also induces 
small bias. Calculate analytically or simulate by brute force.


3. Beam calibration using observations of planets (large scales) and point sources (small scales).
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constructed as described above yield estimates of the
true C` that have been biased by TOD- and map-level
processing. These biased or pseudo-C`, denoted by C̃`,
and the true C` are related via

hC̃`i =
X

`0

M``0F`0B
2

`0hC`0i , (5)

in which the brackets denote ensemble averages, B`

describes the e↵ects of the instrument beam and map
pixelization, F` is a transfer function encapsulating the
e↵ects of TOD filtering, and M``0 is a matrix describing
the mixing of power that results from incomplete sky
coverage.

Following H02, we introduce the binning operator
Pb` and its inverse operation Q`b: if we write the
binned equivalent of Eq. 5 utilizing the shorthand
K``0 ⌘ M``0F`0B

2

`0 and Kbb0 ⌘ Pb`K``0Q`0b0 , then an
unbiased estimator of the true power spectrum can be
calculated from the pseudo spectra via

cCb = K
�1

bb0 Pb0`0C̃` . (6)

To compare the unbinned theory C
th

` to our bandpowers,
we compute the binned theory spectra as Cth

b = Wb`C
th

` ,
where Wb` are the bandpower window functions defined
as

Wb` = K
�1

bb0 Pb0`0K`0` . (7)

C. Mask and Mode-Coupling

Prior to computing their Fourier transforms, we
multiply the maps by an apodization mask W to
smoothly roll-o↵ the map edges to zero and remove
excess power from bright point sources. The apodization
mask is generated in much the same manner as in H18,
using the same mask for all map bundles across all
frequency bands. First, a binary mask is created for
each bundle by smoothing the coadded bundle weights
with a 50 Gaussian, then setting to zero any pixels
with a weight below 30% of the median map weight.
The intersection of all the bundle masks is then edge-
smoothed with a 300 cosine taper. Point sources detected
above 50mJy at 150GHz are masked with a 50 radius
disk (the same size mask used during TOD processing),
and the cutouts edge-smoothed with a 100 cosine taper.
The e↵ective area of the final mask, defined as

P
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where A↵ = 4 arcmin2 is the area of each pixel, is equal
to 1614 deg2. This area is larger than the stated survey
size as a result of the inclusion of lower-weight regions
along the map boundaries.

Applying a real-space apodization mask, or imposing
any survey boundary, convolves the Fourier transform of
the e↵ective mask with that of the on-sky signal, coupling
power between formerly independent `-modes. This
e↵ect is encapsulated in the mode-coupling matrix M``0 .
Previous SPT analyses have used an analytic calculation

of the mode-coupling matrix in the flat-sky regime, as
derived in H02 for temperature and the Appendix of [42,
hereafter C15] for polarization (for notational simplicity
we omit the XY superscript on M``0 , though separate
matrices for TE and EE are used in the analysis). In
H18 this calculation was further verified for the input
range 0 < ` < 500 with the use of curved-sky HEALPix3

[49, 50] simulations.
Here we employ an alternate means of simulating

M``0 that additionally captures distortions due to the
map projection. A set of HEALPix skies are generated
in a similar manner as in H18, with each realization
formed from an input spectrum set to zero outside of a
selected �` = 5 bin; however, here the curved-sky maps
are then reprojected to our flat map projection before
applying the apodization mask. The power spectrum is
then computed in the usual manner, revealing to which
multipoles the �` = 5 input power has been mixed. One
full realization of the mode-coupling matrix requires 640
individual simulations to cover the range 0 < ` < 3200
in increments of �` = 5, and 150 such realizations are
averaged to obtain the final mode-coupling matrix M``0 .

D. Transfer Function

The filter transfer function F` captures the e↵ects of
the filtering steps discussed in §III C. F` is obtained
through simulations, discussed further in §IVD1. In
brief, a known input spectrum C

th

` is used to generate
O(100s) of sky realizations and simulated TOD, to which
are then applied the same filtering steps as on the real
data. The output spectra are then compared to the input
spectra to obtain the e↵ects of TOD filtering.
Solving Eq. 5 for F` directly would necessitate invert-

ing M``0 , which may be ill-conditioned. Instead, we
iteratively solve for F` using the method prescribed in
H02:
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where w2 ⌘
1

⌦

R
d
2
rW2 and ⌦ is the area of the map in

steradians. We find three iterations su�cient to achieve
a stable result.
The iterative approach is unstable for the TE power

spectrum due to zero crossings, so instead we use the
geometric mean of the TT and EE transfer functions
in the same manner as C15 and H18. For cross-
frequency power spectra, a transfer function is computed
directly for each ⌫i ⇥ ⌫j spectrum. The TE and EE

transfer functions for 150GHz are shown in Figure 5,
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FIG. 4. SPT-3G 2018 multifrequency TT/TE/EE band powers in colors as indicated in the legend, along with the best-fit
⇤CDM model to the SPT data including foregrounds (solid lines of matching color). The SPT-3G data provide a precision
measurement of the CMB temperature and polarization anisotropies on intermediate and small angular scales.

using baseline priors.9 We conclude that none of the
likelihood variations above have a significant impact on

9 We also test the case of removing all priors on foreground
amplitude parameters when analyzing TT data alone in
⇤CDM+AL and ⇤CDM+Ne↵ and report no significant change
to cosmological constraints.

cosmological constraints. Together with the consistency
tests at the band power level in §IV B, this indicates that
our results are robust with respect to a mismodelling of
the foreground contamination.
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FIG. 5. SPT-3G 2018 minimum-variance TT/TE/EE band powers (black) along with a selection of contemporary power
spectrum measurements: Planck (blue) [11], SPT-SZ (green, top panel only) [42], SPTpol (green, bottom two panels only,
horizontally o↵set for clarity) [45], ACT DR4 (orange) [4], POLARBEAR (pink, bottom panel only) [46]. The SPT-3G
2018 best-fit CMB power spectrum is indicated in gray. The ensemble of CMB data is visually consistent and yields a high
signal-to-noise measurement of the power spectrum.

V. THE SPT-3G 2018 POWER SPECTRA

We report the SPT-3G 2018 TT/TE/EE multifre-
quency band powers in Appendix C and plot the power
spectrum measurement in Figure 4. The SPT-3G 2018
TT power spectra are sample-variance-dominated across

the entire multipole range. The EE and TE band powers
are sample-variance-dominated for ` < 1275 and ` <

1425, respectively.

We report the minimum-variance band powers formed
in §IV B in Table III and plot them together with
other select power spectrum measurements in Figure 5.



Highly Simplified Power Spectrum Analysis Flow
3. Estimate combined bandpower covariance matrix.


A. Noise covariance matrix.


B. Signal covariance matrix.


4. Jackknife tests for instrumental systematics:


A. Difference subsets of the data that have identical CMB signal and check that result is compatible with 
noise. Estimate noise “expectation spectra” from simulations.


5. Estimate cosmological parameters from bandpower covariance:


A. CAMB or emulator calculates CMB power spectra from input cosmological parameters that we want to 
constrain.


B. Foreground models connect nuisance parameters to power spectra.



Bandpower Covariance Matrix
• Captures correlations between all band 

powers in 90, 150, 220 GHz maps in TT, 
TE, EE, with 1 block per combination.


• Rather complicated estimator for 
covariance based on:


• Signal component estimated using 
mock observations.


• Noise component is estimated 
empirically from the data. Several 
techniques are possible, but very 
large number of noise-only maps can 
be constructed from coadds in which 
~half of the single observation maps 
are multiplied by -1.



Highly Simplified Power Spectrum Analysis Flow
3. Estimate combined bandpower covariance matrix.


A. Noise covariance matrix.


B. Signal covariance matrix.


4. Jackknife tests for instrumental systematics:


A. Difference subsets of the data that have identical CMB signal and check that result is compatible with 
noise. Estimate noise “expectation spectra” from simulations.


5. Estimate cosmological parameters from bandpower covariance:


A. CAMB or emulator calculates CMB power spectra from input cosmological parameters that we want to 
constrain.


B. Foreground models connect nuisance parameters to power spectra.



“Null Tests” for Systematics
• Split data into two maps according to 

possible systematics, and difference 
maps so that the CMB signal nearly 
vanishes.


• Calculated expected residual from 
mock observation simulations.


• Compute chi-square of data relative 
to null expectation and evaluate p-
value.


• Use distribution of p-values as criteria 
for unblinding (i.e. looking at 
cosmological parameters).


• Several other internal consistency 
tests are used, using the band power 
covariance matrix, but not explicitly 
using simulations.
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Azimuth First/Second Left/Right Moon Saturation Wafer

95GHz
TT 0.116 0.614 0.630 0.991 0.882 0.492
TE 0.294 0.067 0.028 0.938 0.234 0.620
EE 0.765 0.398 0.015 0.866 0.340 0.037
TT/TE/EE 0.284 0.210 0.012 0.999 0.508 0.184

150GHz
TT 0.075 0.549 0.861 0.305 0.884 0.485
TE 0.879 0.539 0.859 0.894 0.238 0.465
EE 0.002 0.970 0.432 0.486 0.268 0.005
TT/TE/EE 0.012 0.882 0.889 0.667 0.460 0.045

220GHz
TT 0.310 0.548 0.635 0.635 0.128 0.077
TE 0.420 0.929 0.169 0.834 0.784 0.510
EE 0.991 0.735 0.222 0.835 0.875 0.501
TT/TE/EE 0.751 0.914 0.243 0.931 0.635 0.227

TABLE I. Individual null test PTE values for 95, 150, and 220GHz and TT , TE, and EE spectra. Additionally, we show the
combined TT/TE/EE null test PTE values. All PTE values lie above the required threshold of 0.05/(9⇥ 6) ⇡ 0.001.

we analyze the following data splits (to test for the
corresponding category of systematic errors): azimuth
(ground pick-up), first-second (chronological e↵ects),
left-right (scan-direction dependent e↵ects), moon up
- moon down (beam sidelobe pickup), saturation (de-
creased array responsivity), and detector module or
“wafer” (non-uniform detector properties). The data are
ranked or divided into groups based on a given possible
systematic and we take the di↵erence of these map
bundles to form null maps. We then calculate the null
spectra as the average of null map cross-spectra for each
test and use their distribution to compute uncertainties.
We verify that the average of these spectra is consistent
with the expectation for a given test using a �

2 statistic.
We update the null test framework employed by D21

as follows. First, we scale null spectra by `(`+1)/2⇡ and
apply the debiasing kernel of the corresponding auto-
frequency spectrum to the null spectra. This change
corresponds to a linear transformation and does not
change the pass state of tests while making it easier to
interpret the amplitude of null spectra.

Second, we cast the TE and EE null spectra in nine
bins of width �` = 300 spanning the angular multipole
range 300 < ` < 3000, whereas for TT we use ten
bins of width �` = 250 across 750 < ` < 3000. This
change makes the tests more sensitive to plateaus in
power. Furthermore, this allows us to ignore bin-to-
bin correlations induced by the flat-sky projection step,
which only drop to  20% for bins separated by �` �
100.

Third, we add 1% of uncorrelated sample variance to
the covariance of the TT null spectra. SPT-3G produces
a high signal-to-noise measurement of the TT power
spectrum. Minor low-level systematic e↵ects may appear
above the noise level, while having a negligible e↵ect on
cosmological results due to the high sample variance of
the TT spectrum across the ⇠ 1500 deg2 field.

Fourth, we model the e↵ect of detector time-constants

in the TT scan-direction expectation spectrum. The
maps presented in D21 are not corrected for time-
constants, which we see in the scan-direction test. We
model this null spectrum as a constant o↵set between
left- and right-going scans of 2vt, where we assume a
uniform on-sky scan speed of v = 0.7 deg s�1 across
the survey field and ⌧ = 4.6 ms is the median time
constant. This e↵ect does not appear above the noise
level in the TE and EE data. Detector time-constants
act as an e↵ective beam. The maps used for the beam
measurement in §IV E of D21 include this e↵ect and
therefore when we remove the instrumental beam during
the debiasing procedure, we also remove the signature
of detector time-constants from the data band powers.
The expectation spectrum for all other TT null tests is
approximated as zero.

In addition to the individual TT , TE, and EE

null tests, we also report results for all three spec-
tra (TT/TE/EE) at a single frequency. We forego
quantifying the correlation between the combined and
individual tests and exclude this combined test in setting
the PTE threshold. We assume that the remaining
tests are independent from one another, such that across
three frequencies and three spectrum types and six test
categories, there are N = 3⇥3⇥6 = 54 independent tests.
We require all PTE values to lie above 0.05/54 ⇡ 0.001.
We do not repeat the meta-analyses (i.e. the per-row and
full-table tests) carried out by D21 since the addition of
sample-variance to the TT null spectra means the PTE
values are not expected to be uniformly distributed. Due
to the updates detailed above we expect the PTE values
of the TE and EE null tests to change from D21.

We report the null test PTE values in Table I. All of
the PTE values lie above the set threshold. Across the 72
tests the lowest PTE value is 0.002 (EE 150 GHz Azimuth
test). There is no significant mean change to the PTE
values of the EE and TE reported in D21. The largest
individual change is an increase to the PTE value of the



“Null Tests” for Systematics
• Split data into two maps according to 

possible systematics, and difference 
maps so that the CMB signal nearly 
vanishes.


• Calculated expected residual from 
mock observation simulations.


• Compute chi-square of data relative 
to null expectation and evaluate p-
value.


• Use distribution of p-values as criteria 
for unblinding (i.e. looking at 
cosmological parameters).


• Several other internal consistency 
tests are used, using the band power 
covariance matrix, but not explicitly 
using simulations.
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FIG. 1. Relative conditional residuals, (D⌫µ,cond

b � D̂
⌫µ
b )/�

⌫µ,cond

b , i.e. the di↵erence between conditional predictions for a
given set of multifrequency band powers and the measured data, divided by the square-root of the diagonal of the conditional
covariance. The blue shaded region corresponds to the 3� range and the grey shaded area in the first column indicates the TT

angular multipole lower limit. The conditional residuals are consistent with zero, as evidenced by the PTE values indicated in
the upper right corner of each panel. This speaks to the inter-frequency consistency of the SPT-3G 2018 TT/TE/EE data set.

3G 2018 TT/TE/EE band powers across frequencies
and spectra; we conclude that the data are free of any
significant internal tension at the power-spectrum level.

Though the tests above already complete our passing
criteria to proceed with the analysis, we additionally
investigate the di↵erence spectra in Appendix D. This

allows us to build further expertise with the data. We
observe no significant features, such as slopes, constant
o↵sets, or signal leakage.



Highly Simplified Power Spectrum Analysis Flow
3. Estimate combined bandpower covariance matrix.


A. Noise covariance matrix.


B. Signal covariance matrix.


4. Jackknife tests for instrumental systematics:


A. Difference subsets of the data that have identical CMB signal and check that result is compatible with 
noise. Estimate noise “expectation spectra” from simulations.


5. Estimate cosmological parameters from bandpower covariance:


A. CAMB or emulator calculates CMB power spectra from input cosmological parameters that we want to 
constrain.


B. Foreground models connect nuisance parameters to power spectra.



Parameter Constraints
• Likelihood function incorporates:


• Debiased bandpowers


• Bandpower covariance


• Model of CMB band powers as a 
function of cosmological parameters


• Models of foregrounds with priors on 
parameters (simple analytic models 
good enough for SPT patch + polarized 
data)


• MCMC to extract cosmological 
parameters in Bayesian framework, which 
facilitates combination of data from 
different probes (e.g. Planck, BAO, etc.).


