
Jovan Mitrevski for CSAID CMS Developers
March 30, 2023
CSAID DAQ Meeting

CMS Trigger Status

3/30/23 Jovan Mitrevski | CMS Trigger Status

• The HL-LHC will target rare processes and precision measurements that can
benefit from much higher statistics.

• The instantaneous luminosity will be high: up to 200 p-p collisions per bunch
crossing.

• Triggering will be more challenging.

The HL-LHC

2
L. Silvestris | HL LHC CMS CD-2-3c IPR - CMS Overview January 24-27, 2023

§ HL-LHC Upgrades to be installed in LS-3
§ HL-LHC running period continues through 2040 to collect 10-15 times more data
§ Accelerator conditions of Run 4+ drive motivation of Upgrade

The LHC/ HL-LHC plan

Run 1
Up to 0.75 ´ 1034 cm-2s-1

50 ns bunch
pileup ~20

Run 2
0.5-2.1 ´ 1034 cm-2s-1

25 ns bunch
pileup ~40

Run 3
1.7-2.2 ´ 1034 cm-2s-1

25 ns bunch
pileup ~60

Run 4-6
~5-7.5 ´ 1034 cm-2s-1

25 ns bunch
pileup ~140 - 200

January 24-27, 2023

3/30/23 Jovan Mitrevski | CMS Trigger Status

• The trigger system consists of a hardware-based L1 trigger followed by a software-
based High-Level Trigger (HLT).

• L1 output bandwidth increased to 750 kHz (from 100 kHz).
• L1 latency increased to 12.5 µs (from 3.5 µs) to allow for more processing.
• Global tracking will be available in L1.

CMS Trigger for HL-LHC

3

3/30/23 Jovan Mitrevski | CMS Trigger Status

• Correlator trigger:
combine info from
upstream systems
to improve trigger
performance

CMS L1 Trigger for HL-LHC

4

266 Chapter 5. Conceptual design of the Phase-2 Trigger

data from barrel and endcap can be processed by the same board while offering a more adap-
tive interface to the track finder if required in the future. In the case of the GMT, the choice
to align the TMUX period with that of the track finder is motivated by the main processing
task of this system: correlate tracks and muon information. The firmware resource estimations
indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 upgraded trigger design. The calorimeter trigger
is represented on the left and composed of a barrel calorimeter trigger (BCT) and a global
calorimeter trigger (GCT). The track finder in the center transmits tracking information to the
correlator trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT).
The muon trigger architecture is represented on the right and composed of three muon track
finders: EMTF, OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-
flow processing. The global trigger (GT) receives all trigger information for final decision. For
each of the architecture component, the information about the time slice (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis) are
represented. The architecture modeled relies largely on the use of generic processing boards
to equip each subsystems and the use of specific processing boards is only designated for spe-
cialized tasks. The trigger components directly interfacing with sub-detectors are subject to
constraints on the number of links and assignment of data fibers. At the time of writing, most
of the sub-detector backend electronics designs have been finalized and the trigger primitive
formats specified. In some cases, the format was directly optimized to achieve the best algo-
rithm performance or to optimize the resources on the receiving end. For some sub-detector
interfaces, a baseline format was assumed and it was verified that reasonable changes have
negligible consequences on the overall design. Later stages of the architecture displayed in
Fig. 5.12 show more flexibility in their design. This allows contingency for future improve-
ments and additions.

3/30/23 Jovan Mitrevski | CMS Trigger Status

• Combine information across all subdetectors to achieve the best possible resolution

Particle Flow Reconstruction

5

Tracks

Muon
segments

HCal

Muons

Electrons

(Isolated)
photons

Charged
hadrons

Neutral
hadrons

ECal

3/30/23 Jovan Mitrevski | CMS Trigger Status

• The correlator is divided into two parts:
– Layer 1 (CL1): Create particle flow candidates and suppress

pileup with PUPPI, create egamma objects
– Layer 2 (CL2): Reconstruct objects from the Layer 1 inputs

• Implemented on “APx” and “Serenity” ATCA boards

– use AMD/Xilinx Virtex Ultrascale+ FPGAs (VU13P–2 in
production, VU13P–1 and VU9P–1/2 test boards)

– Over 100 25 Gbps optical links

• CL1 uses 18 APx boards for the barrel section and 18
Serenity boards for the endcap.

• Fermilab has an APx board with a VU9P–1 in Wilson Hall, 14th
floor, in an ATCA shelf.

|η | < 1.5

Correlator Trigger

6

APxF First Boards

1/18/23 Sridhara Dasu, HL-LHC CMS CD2 Review, B402.6.3 & B402.6.5 Trigger Hardware 22

§ Two units assembled (VU13P-1, VU9P-2)

§ Same PCB stackup as APd1

§ Heat Sink 2X larger than APd1

§ Testing optical link positions with 2020

(3.3V only) and 2021 (3.75V Tx) Firefly

25X12 Alpha parts and production 28X4

part

§ All results shown from VU13P FPGA

3/30/23 Jovan Mitrevski | CMS Trigger Status

• Board designers provide a framework shell (FS); developers add the algorithm.
• Top level algorithm is written in VHDL, but many algorithms are written in High Level

Synthesis (HLS): C++ without dynamic memory, pragmas to direct conversion
– Generally easier to code: do not explicitly use clock or time
– Same code can be compiled for different clock speeds
– Can validate logic by just compiling as C++ (used extensively in our CI/CD)
– Can explore algorithm variations more quickly

• Downside of HLS is that you lose some control
– VHDL can be very expressive, and some  

algorithms may map better to it directly
– HDL generated from HLS is black box

VHDL and HLS

7

3/30/23 Jovan Mitrevski | CMS Trigger Status

• APx development board uses a VU9P–2 FPGA
• System is time-multiplexed 6 times (TM6): there are 6 copies of each board, and

each board gets 1/6th of the events. Inputs are TM6 or TM18
• The CL1 algorithm is made up of:

– Regionizer (VHDL): Divide the inputs into small regions (with overlaps).
Subsequent algorithms run in small regions

– Particle Flow (HLS): Run particle flow algorithm 
matching tracks and calorimeter clusters

– PUPPI (HLS): determine object pile-up probability
– Final sort (VHDL): sort the PUPPI output
– egamma track matching (not yet implemented)

Correlator Layer 1 (Barrel)

8

L2 reg

sort

250 Chapter 5. Conceptual design of the Phase-2 Trigger

Table 5.5: Summary of the data flow in the Correlator Trigger system
System TMUX (in BX) bits/event h ⇥ f regions Links/FPGA (Tx)
Tracker 18 81k 1 ⇥ 9 2
HGCAL 18 120k 2 ⇥ 3 4
HF 6 14k 2 ⇥ 1 1
Barrel Calorimeter 6 60k 1 ⇥ 3 6
Muon 18 6k 1 ⇥ 1 1
GTT (vertices) 6 1k 1 ⇥ 1 1

firmware is given in Section 3.5. The algorithm will output particle-flow candidates of the
types: electron, photon, muon, charged hadron, neutral hadron. Each candidate will also
have a probability of the particle being from pileup based on the PUPPI algorithm. To re-
call, the particle-flow algorithm is an inherently local association algorithm (DR comparisons)
and processes its input data in h ⇥ f regions that are roughly 0.5 ⇥ 0.7. Each particle-flow re-
gion includes an overlap buffer region of 0.25 h and f units to find particle candidates on the
boundary. The particle-flow region size is optimized to not be too small, such that the region
overlaps dominate the reconstruction area, and to not be too large, such that we waste FPGA
resources doing associations of objects that are far apart from each other. This is described in
more detail in Section 3.5.5 where we show the resource usage for a range of different region
sizes and the number of inputs into that region. In Fig. 5.7, we show the geometrical regions
corresponding to the input regions and the particle-flow processing regions. One important
feature of this design is that the particle-flow regions in the Forward Calorimeter (|h| = 3–5)
will be processed within the Global Calorimeter Trigger FPGAs and will be passed through
the CTL1 FPGAs directly to CTL2. Because there is no track linking in the forward region, the
particle-flow algorithm is a null algorithm and the PUPPI forward algorithm will be performed
in the GCT.Input Regions 2

φ
=

0,
2π

η=0 2 3 4 51

Inputs Regions:
Barrel Calo
HGCal
Tracker
HF

-1-2-3-4-5

PF regions

Figure 5.7: Correlator Trigger input regions are shown for the calorimeters and trackers in red,
blue, green, and magenta. The particle-flow processing regions are shown in black including
the overlap areas (0.5 in h).

9

…
track

other

…
track

other

…
track

other

vtx

2 reg* 64to96*

* means that it is replicated per link, not just one as in the diagram † per detector per group; each small region pair has a pipe/buffer

format conv* clock domain
FIFO*

No registers in between; add?

regionizer_wrapper

Instantiated in:

level1_fifo_only_buffer
sync

big region end
ctrl signal

L1 regionizer*:
SR LUT lookup

 (no reg on input),
data latched 2 reg;

fill pipes

Regionizer
L1 to L2 pipes†

L2 regionizer†:
URAM buffers
(1 reg before)

Registers

level2_*

algo_wrapper

pflow

track
bypass

fifo

shift registers

neutral puppi

charged puppi and fifo

bitonic sort

No registers in between; add?

output links

clock domain
FIFO

out

Barrel Correlator L1

360 MHz
360 MHz

240 MHz

3/30/23 Jovan Mitrevski | CMS Trigger Status

• Originally had trouble meeting timing
– Decided to focus on –2 FPGA boards
– Moved to using Vitis HLS
– Wrote a bitonic sort in VHDL with initiation interval of 2
– Inserted shift registers where needed to ease routing
– Tried to control the layout and flow of the data across the

Super-Logic Regions (SLRs) with link assignments and a bit of
floorplanning

• The barrel is divided into 3 big regions, each assigned to a board
(replicated 6 times)
– Originally, the big regions were segmented in η (blue)
– To reduce the number of input fibers, we recently moved to big

regions segmented in φ (red)

CL1 Barrel Design Evolution

10

η

φ

3/30/23 Jovan Mitrevski | CMS Trigger Status

• Recently performed multiboard tests
– Vertex information from the Global Track Trigger (GTT)
– Other data is read from playback buffers

• Identical results with alternate configuration, reading everything
from playback buffers

• Vivado 2022.2 was used to build the barrel firmware
– (Used 2021.2 Vitis HLS)

• Latency:
– 0.86 μs (last-in, last out)
– 1.16 μs (first-in, first out)

Correlator Layer 1 (Barrel)

11

L1 reg

L2 reg

pflow

puppi
neut

sort

puppi
chs

3/30/23 Jovan Mitrevski | CMS Trigger Status

• When we had the CL1 segmented in η, the firmware simulation and emulation
software predictions matched

• With the switch to φ segmentation, the firmware got ahead of the emulator
• We have recently updated the emulator and better integrated it into CMSSW.
• Working to add an emulation-simulation test in our CI/CD suite

– estimated time: 1-2 weeks
• Add egamma matching algorithm (goal: May)
• Build firmware for VU13P–2 (goal: end of April)
• CL1 to CL2 APx multi-board test
• Multi-board tests with non-APx boards

CL1 Barrel Near Term plans

12

3/30/23 Jovan Mitrevski | CMS Trigger Status

• hls4ml is a compiler taking Keras, pytorch, or ONNX as input and producing HLS
• Was originally developed for CMS trigger applications, and is being used in HL-

LHC trigger development, including some CL2 algorithms
• CSAID plays a major role in the development for hls4ml

Converting NNs to HLS: hls4ml

13

2018 JINST 13 P07027
2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in figure 1.

�����������
�����

�����
���������!�
	"������

#

�����������������
�����������

��������������

��
��
�������

��
��
��� ������

��������������������

�����������!���
������

�����

���������������������
����!���!������!

hls 4 ml

hls4ml

HLS 4 ML

Figure 1. A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in section 2.3) before settling on a final model. The blue section of the workflow is the task
of hls4ml, which translates a model into an HLS project that can be synthesized and implemented
to run on an FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second
at a relatively low power cost with respect to CPUs and GPUs. However, such operations consume
dedicated resources onboard the FPGA and cannot be dynamically remapped while running. The
challenge in creating an optimal FPGA implementation is to balance FPGA resource usage with
achieving the latency and throughput goals of the target algorithm. Key metrics for an FPGA
implementation include:

1. latency, the total time (typically expressed in units of “clocks”) required for a single iteration
of the algorithm to complete.

2. initiation interval, the number of clock cycles required before the algorithm may accept
a new input. Initiation interval (often expressed as “II”) is inversely proportional to the
inference rate, or throughput; an initiation interval of 2 achieves half the throughput as an
initiation interval of 1. Consequently, data can be pipelined into the algorithm at the rate of
the initiation interval.

– 4 –

hls4ml: accelerating ML on hardware

25

Originally designed for LHC triggers applications but broad and growing user base
Example: ML training (qkeras/brevitas), backend devices (Xilinx, Intel, Microsemi, ASIC),

network architectures (Conv, RNN/LSTM, Graph), and applications (…)

fastmachinelearning.org/hls4ml

An open source project - join the conversation!

https://github.com/hls-fpga-machine-learning/hls4ml

