
Memory Usage Studies

Jake Calcutt
March 13, 2023

1



Introduction

Recently, a memory usage task force was created to study any shortcomings/places 
for improvement for memory usage within DUNE’s standard production workflows

Started looking at the PDSP production chain

● 4 stages: event gen, g4/photon, detsim, reco
● Ran valgrind’s massif/memcheck tools on one event passed through each 

stage
● Tried to identify areas in DUNE code we can start to address

2



Valgrind

Valgrind is a profiler that comes with several tools for studying memory usage

● Massif categorizes memory allocated on the heap
○ I.e. global objects that persist regardless of scope – not local variables deallocated after 

functions are called

● Memcheck looks for memory issues like leaks (i.e. not deallocating/deleting 
pointers) 

3



Massif Output

4

Total memory 
usage

Instructions 
performed

Detailed 
snapshots



Massif Output

5

Total useful memory at 
snapshot



Massif Output

6

Allocation tree



at this snapshot (and most others in this program) larsim’s PhotonVisibilityService is 
one of the top two memory users → Can this be improved?

Massif Output

7



at this snapshot (and most others in this program) larsim’s PhotonVisibilityService is 
one of the top two memory users → Can this be improved?

Massif Output

8

Warning: I understand this can 
get political, so some care moving 
forward on this example is 
definitely needed



Massif Peak Summaries

Gen: small amount of memory usage ~ 470 MB

G4/Photon: ~4.5 GB

● PhotonVisibility Service is a main contributor

Detsim: ~4 GB

● Biggest contributor appears to be art’s delayed reader

Reco: ~3 GB

● ~800 MB, from various Wirecell methods
● 370 MB from DataPrep tool
● 115 MB Tensorflow

9



Memcheck output

Ran into issues with memcheck taking too long to run interactively and various grid 
issues so I didn’t get the chance to add the output to the presentation. Will update 
when ready

10


