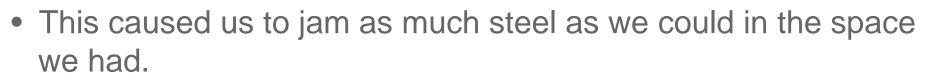


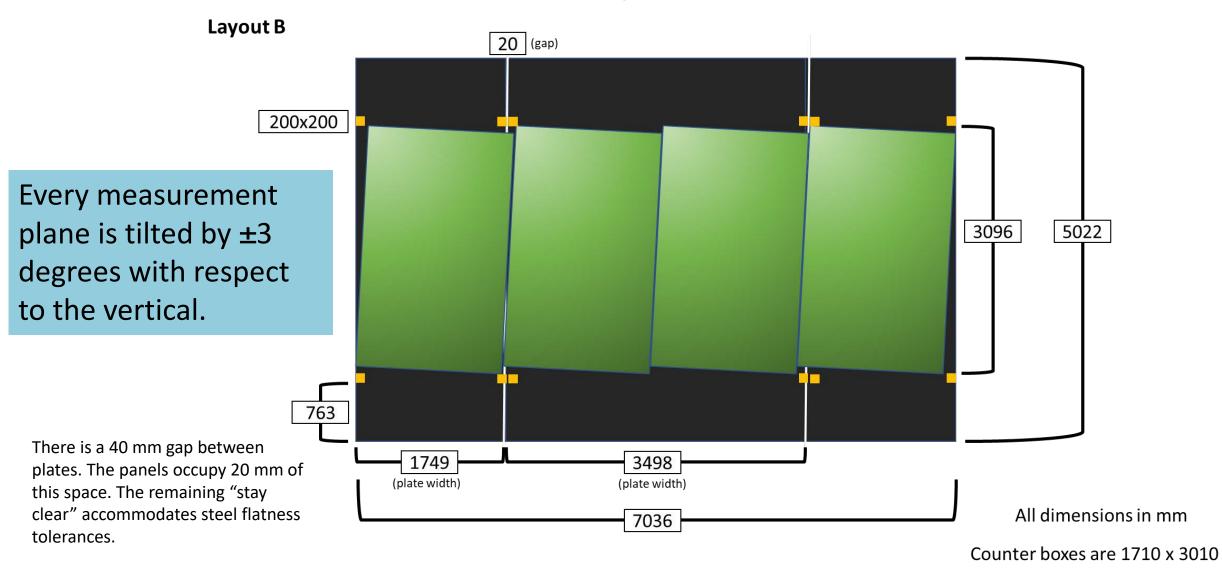
Design Options

Tom LeCompte SLAC

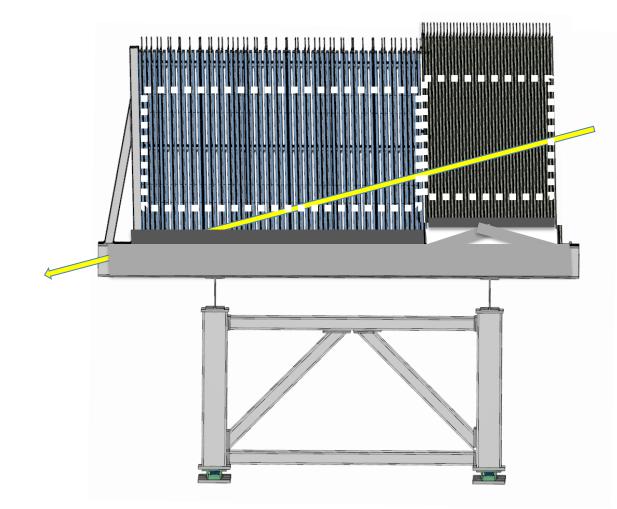

Preview

- These are the results of some non-Geant (purely analytic) studies having to do with geometry
- The point is to set the scale, not the exact number
 - John Wheeler once told me "never start a calculation before you know the answer:
 - Yes, that John Wheeler
 - Is this a fraction of a precent? Tens of percent?
- Preview of the answer: our decisions won't be driven by a large effect with a given design change we are talking modest changes with pros and cons

Some History


• In the early days of the TMS one of the complaints was that it didn't go high enough (then 10 GeV) in momentum.

- Detector space was at a premium, and stereo allows you to emphasize the bend view
- At this point, the ND-Lar aspect ratio was settled, so the TMS shape was too. A more symmetric shape, perhaps with a toroidal field was already precluded.


Detector Plane + Detector Panel Geometry

LBNF/DUNE

The Problem With Stereo

- The good news with stereo is it measures x better than y
- The bad news with stereo is that it measures y worse than x
- Did the particle exit or was it stopped?
 - Top and bottom are worse than sides (they're bigger)
 - Bottom is worse than top (beam point down)

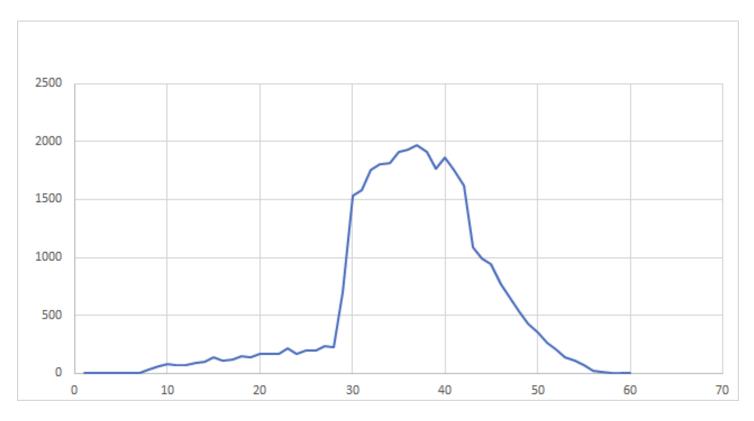
So How Often Does This Happen?

- I started with the 100K TMS muon sample Chris Marshall gave me at the start of TMS
 - Required them to exit the west face of ND-Lar, enter the east face of TMS, and have sane energies
 - See how often they exist assuming average energy loss and no side-to-side multiple scattering (on average the same number scatter up as scatter down)
- 3.5% of muons exit before stopping
 - This is predominately at high momentum at and below oscillation max it's 1.7%
 - That sets the scale for the size of error we might make

How Much Error Does This Introduce?

- There is an upper bound the size of the effect
 - If we assume nothing ever exited, we would underestimate the energy of 3.5% of our muons by some non-zero amount. (But its small, as this is a steeply falling function of p)
- We have more information
 - We have the y-slope from ND-Lar
 - We have (at least statistical) information on slowing tracks from the Bragg peak
 - We have the location of Michel electrons
 - We have the energy spectrum (problem is worse at high p)
- I believe we are looking at ~20% of the magnitude of the effect or better
 - Double it to determine what might exit, and take 10% of that.
 - That's 0.7% overall, and 0.4% at oscillation max comparable to confusion because two muons end up in the same strip (see previous talk)

One Comment


 If you are worried about a 0.4% error in acceptance, get involved in the strip extrusion process: this corresponds to about 140 microns in the scintillator active width.

That will take work.

Charge Identification

- I have often said that trading x-information for y-information messes up your charge identification. Is that true?
- Well, sort of.
- Start with the same sample and look at where muons stop if the parent neutrino is within 20% of oscillation max.

Charge Identification II

- We start getting good charge ID (several percent misidentification) above about 8 hits
- With 30 hits we expect 20σ separation, assuming errors are Gaussian
 - They aren't at that level they are driven by large angle scatters and catastrophic energy loss
 - We should see sub-percent errors at oscillation max, even with fewer counters in the bend view
- What about the second oscillation max?
 - These muons barely make it into the TMS (if they do at all). I don't trust this level of study.
 - But the point is well-taken: the problems with charge identification will present themselves for muons in the few hundred MeV range.

Comment On Beam Monitoring

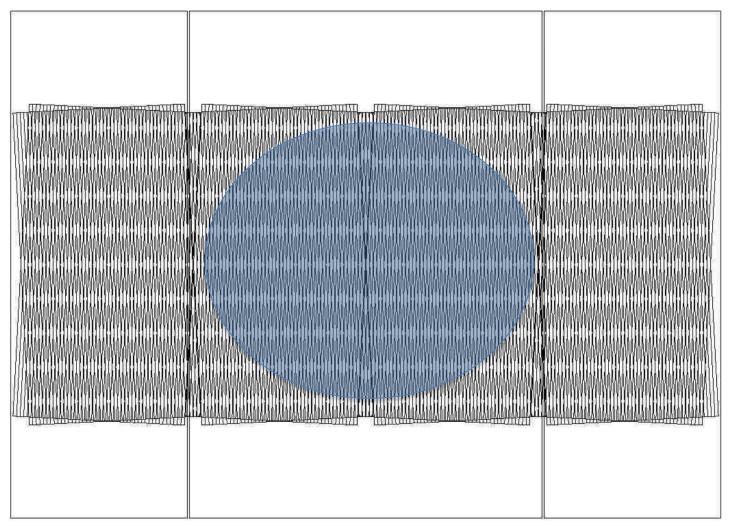


Figure by Palash Roy, Wichita State

 Clarence Wret showed that in most cases beam issues manifest earlier as a energy change than a position change.,

- Even a horn tilt – the reason is that this effectively moves TMS offaxis

 The best position resolution is when the muon beam spot is fully contained on the face In the limit of a uniform beam spot much larger than TMS, there is of course no sensitivity.

LBNF/DUNE

Beam Monitoring

- TMS gets millions of muons per day
- That allows us to determine the beam spot average to within 3 mm in minutes
 - A time short compared to deciding who, if anyone, should be called
 - Assuming the beam spot as described last slide the more uniform the beam is, the less good monitoring is (and the less important the details of the detector)
- What's special bout 3 mm?
 - That's about the PRISM accuracy in x-positioning
 - That's coincidentally about the expected motion in y (1000 tons moves the building)

Summary

- It doesn't make a huge difference whether we have orthogonal vs. stereo counters
 - Worried about sub-percent acceptance effects? Orthogonal is better
 - Worried about charge ID for few hundred MeV muons?* Stereo is better
 - Neither is hugely better
- I don't believe a Geant-level study will change anyone's mind: It's more about what you want to measure than performance near the edges.
- Beam monitoring limitations on position are driven more by how accurately we know where TMS is than its internal construction.

* My preference, as DIF muons are our only window into the charge of ND-Lar hadrons. But your interests may differ.

LBNF/DUNE