DUNE FDR: FD2 Bottom Drift Electronics WIB and Cold Cables

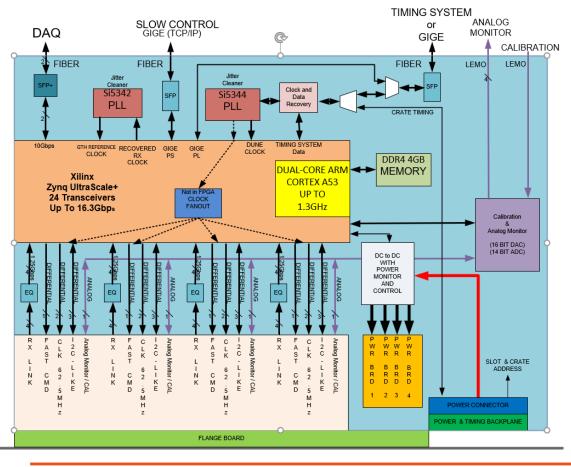
H. Chen on behalf of DUNE TPC electronics team Brookhaven National Laboratory

05/16/2023

Outline

[Charge Question: #4, 7, 9]

- Introduction
- Warm Interface Board
 - Final Design
 - QC Test and Operational Experience
- PTB, Flange Board, CRP Patch Panel (FD2-VD specific)
 - Final Design
 - Operational Experience
- Cold Cables (FD2-VD specific)
 - Final Design
 - QC Test and Operational Experience
- Response to Charge Question

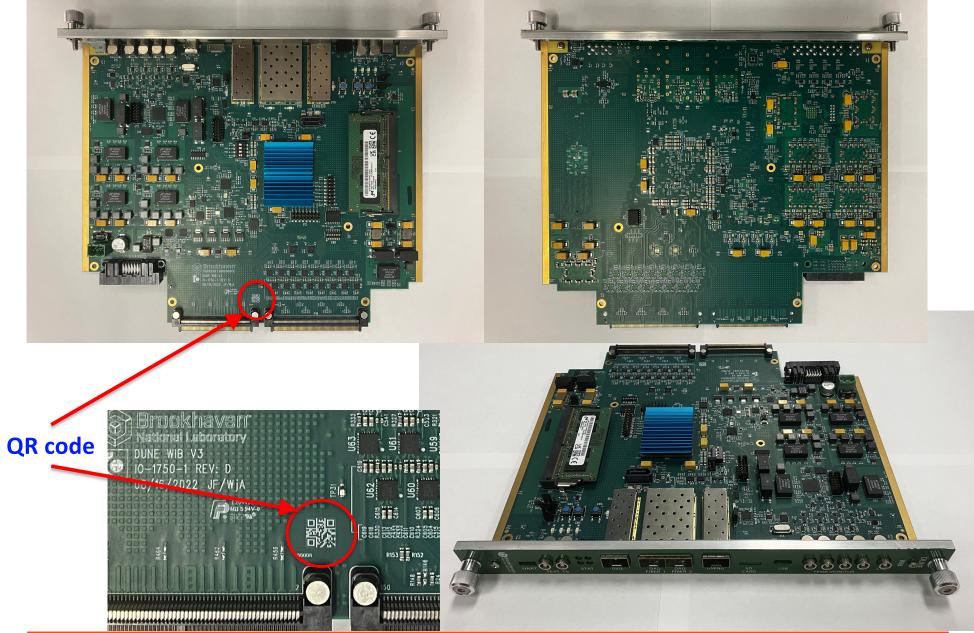

Introduction

- FD2-VD BDE design is mostly based on the FD1-HD TPC electronics design, with few exceptions
 - FEMB has a different data connector
 - Please see Shanshan's talk for more details
 - Cold cables have different length plus a CRP patch panel
 - Well motivated by the fact
 - BDE installation will take place in CRP factory
 - APA cold electronics installation will take place at SURF
- The support document for FD1 TPC Electronics FDR on September 29, 2022 is a good reference
 - https://edms.cern.ch/document/2782297/

Warm Interface Board

- WIB requirements are documented
 - https://edms.cern.ch/document/2341138/
 - Both hardware and firmware documents

- Receive data 4 FEMBs through cold cables
- Send data to DAQ system through fiber optical links
- Receive power and timing information from PTC through PTB
- Distribute power, timing and control to 4 FEMBs through cold cables
- Slow control interface through GbE
- Monitoring and calibration interface for diagnostic



WIB Design Evolution

- The WIB with Zynq UltraScale+ MPSoC ZU6CG has been developed since 2019
- Prototype design (WIBv2: IO-1750-1/-1A) in 2019/2020 has been tested extensively
 - Bench test and integration test at BNL
 - Firmware development at Florida and Penn
 - Integration test with ICEBERG at Fermilab
- Final design (WIBv3: IO-1750-1B/-1C/-1D) in 2022 for APA/CRP cold box tests and ProtoDUNE-II HD/VD at CERN
 - Design changes from WIBv2 to WIBv3 described in the FDR support document (<u>https://edms.cern.ch/document/2782297/</u>)
 - Final design files: <u>https://edms.cern.ch/document/2712914/</u>
 - Minor updates of WIBv3 to address few cosmetic issues
 - IO-1750-1C: Micro-USB to USB-C; MicroSD socket and location
 - IO-1750-1D: QR code; current monitoring
 - Discussion of options to support powering off individual WIB by adding I2C buffer
 - Minor revision is foreseen before PRR
- FPGA firmware is fully compatible among WIBv3 boards

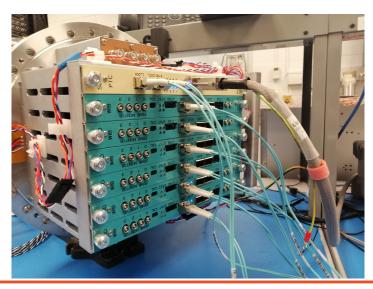
WIBv3 IO-1750-1D

WIB QC Test

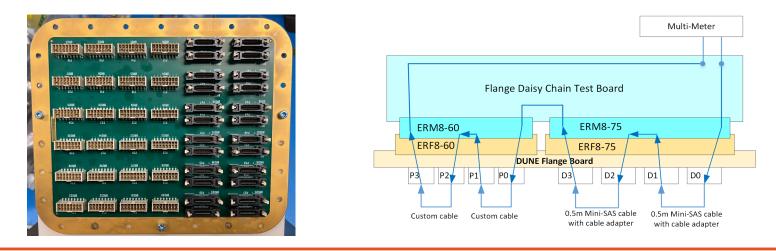
- QC plan is documented
 - https://edms.cern.ch/document/2815079/
- WIB QC test procedure has been developed
 - WIBv3, 4x FEMB and a WIB adapter board form the QC test stand
 - Test of 1 WIB takes about half hour to go through the full QC procedure
 - QC test script is being optimized to improve the efficiency
- QC test of 15 WIBs recently
 - 10 boards passed the first QC
 - 5 passed QC after assembly issues and defective chip are fixed

WIB_QC_test												
	Initial Check	Power Rail	General Interfaces	FEMB Control	Timing	SFP IBERT						
	Power Measurement	Disconnect the power	SD Boot	Overview of the whole interface	- SI5344 Configuration -	IBERT						
		Initial Ports — Connect the LT controller	Slow Control - Uart									
	Power Record	Check Pin Value		FEMB_PWR		Set TX/RX Pattern						
		Go_Online	Network - Anaconda Putty	FEMB MON_CAL	1.25 Gbps SFP channel							
		Operations — PCROM				BER Analysis, 10^(-13						
	Jumper & adujst SW4		Uart - Standard Port Bond rate: 115200	Check_FEMB_Channel								
		Record and Compare Result				Power On Record						

WIB Operational Experience


- WIBv3 has been used extensively for APA/CRP cold box tests and ProtoDUNE-II HD/VD at CERN
 - 5 WIBs for APA cold box test
 - 20 WIBs for ProtoDUNE-II-HD
 - 6 WIBs for CRP cold box test
 - 12 WIBs for ProtoDUNE-II-VD
 - Spare WIBs for VST
- ProtoDUNE-II-HD has been read out by WIBv3 through FELIX successfully since 2022
 - APA cold box test has been read out by WIBv3 through FELIX since 2022
 - CRP cold box test has been read out by WIBv3 through FELIX since 2022
 - VST is being used to test WIBv3 Ethernet readout, later to be deployed for ProtoDUNE-II-HD/VD
 - Please see Roger's talk for more details

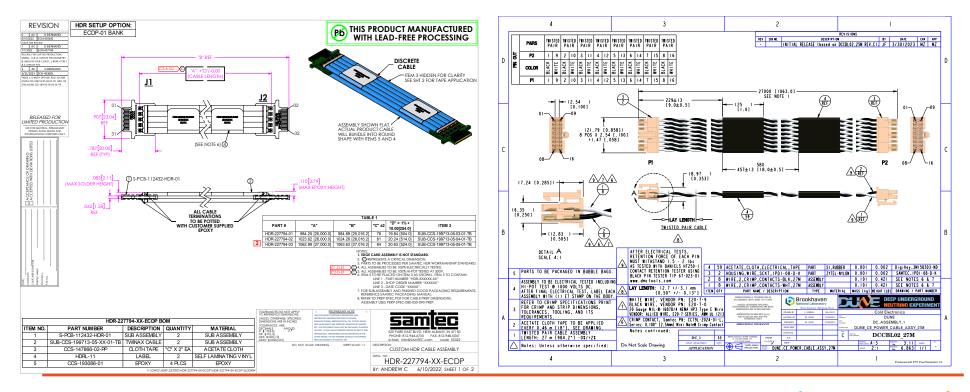
PTB


- Final design of PTB in 2021 for APA/CRP cold box tests and ProtoDUNE-II HD/VD at CERN
 - Final design described in the FDR support document (https://edms.cern.ch/document/2782297/)
 - Final design files: https://edms.cern.ch/document/2712915/
 - Minor design changes from preliminary design for ProtoDUNE-I to support 8 address bits to identify a unique crate address of WIEC in FD
- PTB QC test
 - PTB is a simple board with only passive components, visual inspection is required before it is installed in the WIEC
 - The connectivity of PTB is verified during the final walk-through QC test of the feed-through and WIEC assembly before the shipment
- PTB operational experience
 - PTB assembled in WIEC has been used extensively for APA (1)/CRP (1) cold box tests and ProtoDUNE-II HD (4)/VD (2) at CERN

Flange Board

- Final design of flange board in 2021 for APA/CRP cold box tests and ProtoDUNE-II HD/VD at CERN
 - Final design described in the FDR support document (https://edms.cern.ch/document/2782297/)
 - Final design files: https://edms.cern.ch/document/2712916/
 - Design changes to accommodate new cold cable connectors, and adjustment of locations for WIB connectors
- Flange board QC test
 - After the visual inspection, each flange board will perform the continuity test with a DUNE flange daisy chain test board (IO-1869-1) before it is installed on the flange
 - The connectivity of flange board is verified during the final walk-through QC test of the feedthrough and WIEC assembly before the shipment
- Flange board operational experience
 - Flange board assembled in WIEC has been used extensively for APA (1)/CRP (1) cold box tests and ProtoDUNE-II HD (4)/VD (2) at CERN

CRP Patch Panel


- Final design of CRP patch panel in 2022 for CRP cold box tests and ProtoDUNE-II VD at CERN
 - Final design files: <u>https://edms.cern.ch/project/CERN-0000242190</u>
- Patch panel QC test
 - Patch panel is a simple board with only passive components, visual inspection is required as the first step
 - The connectivity of patch panel is verified before and after thermal cycles in LN2
- Patch panel operational experience
 - 8 panel panels have been mounted on CRP4/5 and used extensively for CRP cold box tests at CERN
- Please see Manhong's talk for mechanical assemblies of WIEC with flange and CRP patch panel

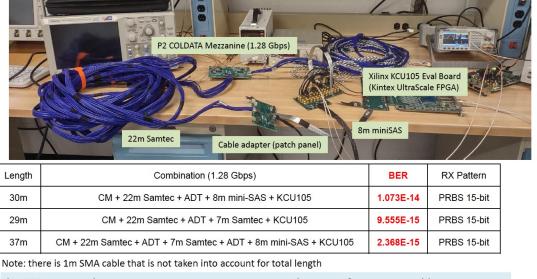
Cold Cables

- BDE cold cables have 2 segments
 - 2.5 m cables from FEMB to CRP patch panel
 - 27 m cables from CRP patch panel to signal feed-through flange
 - FEMBs, 2.5 m cables and panel panels will be mounted on CRP and tested in CRP factory, before the full CRP assembly is shipped to SURF
- 27 m data cable and 27 m power cable drawings are shown below
 - Data cable is made by Samtec without mounting tabs on connector as FD1-HD
 - Power cable is assembled by a local vendor with extrusions from Allied Wire

Brookhaven[®]

National Laboratory

Cold Cables – QC Test and Operational Experience


- 2.5 m data cable and 2.5 m power cable pictures are shown below
 - Data cable is MiniSAS cable made by 3M with non-conductive sleeve assembled in house
 - Power cable is assembled by a local vendor with extrusions from Allied Wire
- Cold cables QC test
 - All cables have been QC tested by manufacturer with test reports available
 - 5% cold cables will be sample tested in LN2 from each delivery batch
- Cold cables operational experience
 - CRP4 (24 sets of 2.5 m/25 m cold cables) has been tested in the cold box at CERN
 - CRP5 (24 sets of 2.5 m/25 m power cables, 24 sets of 25 m Samtec cables, 12 sets of 2.5 m/3 m MiniSAS cables) has been tested in the cold box at CERN

Cold Cables – Length

- Recent cable routing studies show 27 m cables are required for FD2-VD
 - Please see Manhong's talk for details of cable routing
- Baseline is to use 27 m cables for all 80 bottom drift CRPs
 - 27 m cables have been ordered and will be delivered by the end of May, following by the cold box test at CERN
 - BER test in the lab has demonstrated reliable data transmission for 29 m Samtec cables and 8 m MiniSAS cable
 - CRP4/5 cold box tests at CERN have demonstrated reliable data transmission for 25 m Samtec cable and 2.5/3 m MiniSAS cable

BER Test (without Equalizer)

> BER test was done at room temperature, expect to see better performance at cold temperature

Charge Question

 4. Has the design of the patch panel been finalized, a prototype produced, tested and validated with a CRP?

- Yes

- Patch panels have been tested in CRP4/5 cold box tests at CERN successfully
- 7. Can the procurement of the discrete components for the WIBs and the FEMBs be launched?

- Yes

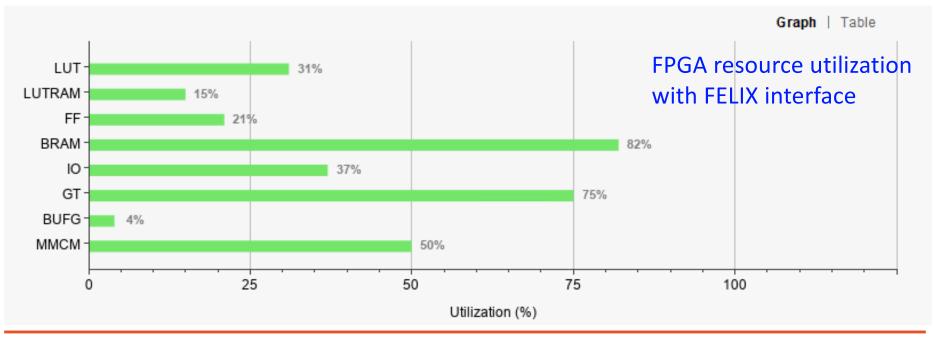
- FPGA procurement for WIB has been launched and reviewed in the PRR last week
 - <u>https://indico.fnal.gov/event/59429/contributions/265863/attachments/166685/222105/</u> <u>WIB-FPGA.20230508.pdf</u>
- BOMs for discrete components of WIB and FEMB have been stable since 2022
- Procurement of discrete components will be handled at BNL, same as the WIB FPGA procurement
- 9. Have the CRP tests with the FEMBs, miniSas cables and the final patch panel been completed?
 - Yes
 - FEMBs, MiniSAS cable and patch panel have been tested in CRP4/5 cold box tests at CERN successfully

Backup Slides

Warm Interface Board

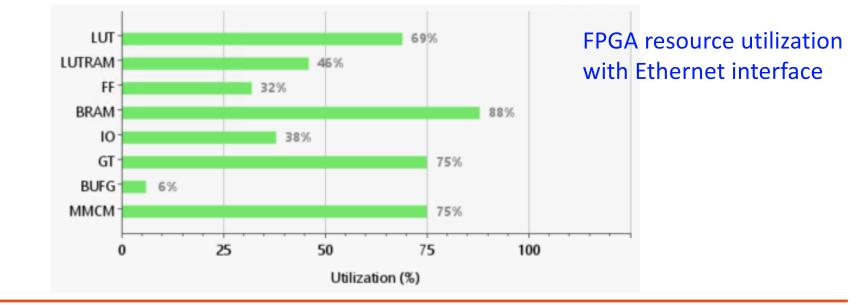
- WIB for ProtoDUNE-I
 - Intel/ALTERA Arria V FPGA 5AGTFD3H3F35I5N
 - 30 WIBs were installed in 6 WIECs to read out 6 APAs for ProtoDUNE-I operation from 2018 to 2020 successfully
- WIB for ProtoDUNE-II HD & VD
 - AMD/Xilinx Zynq UltraScale+ MPSoC XCZU6CG-1FFVB1156E
 - 20 WIBs were installed in 4 WIECs to read out 4 APAs for ProtoDUNE-II-HD in 2022
 - 12 WIBs are being installed in 2 WIECs to read out 2 CRPs for ProtoDUNE-II-VD in 2023
- WIB for DUNE FD1-HD & FD2-VD
 - AMD/Xilinx Zynq UltraScale+ MPSoC XCZU6CG-1FFVB1156E
 - 750 WIBs will be installed in 150 WIECs to read out 150 APAs for FD1-HD
 - 480 WIBs will be installed in 80 WIECs to read out 80 bottom CRPs for FD2-VD

FPGA Selection


- A market survey was carried out after ProtoDUNE-I construction to identify a proper FPGA for DUNE far detector WIB design
- This was discussed during the DUNE collaboration meeting at CERN in January 2019
 - <u>https://indico.fnal.gov/event/16764/contributions/39509/attachments/24693/30763/BN</u> LCEUpdate.20190129.pdf
- The MPSoC XCZU6CG offers a cost effective alternative, with additional features, e.g. ARM processor, TCP/IP etc.

	WIB	WIB	WIB	WIB	WIB	WIB	WIB
Manufactures	Intel/Altera	Intel/Altera	Intel/Altera	Xilinx	Xilinx	Xilinx	Xilinx
Series	Arria V	Arria 10 GX	Arria 10 GX	Kintex UltraScale	Kintex UltrScale+	Kintex UltrScale+	Zynq UltraScale+
FPGA	5AGTFD3H3F35I 5N	10AX032H4F34E 3SG	10AX048H4F34E 3SG	XCKU040- 1FFVA1156I	XCKU9P- 1FFVE900E	XCKU11P- 1FFVA1156E	XCZU6CG- 1FFVB1156E
LEs (K)	362	320	480	530	600	653	469
M10K/M20K Memory Blocks	17.26 (M10K)	17.82 (M20K)	28.62 (M20K)	-	-	-	-
MLAB Memory	2	2.7	4.2	-	-	-	-
Max. Distributed RAM (Mb)	-		-	7	8.8	9.1	6.9
Total Block	-	-	-	21	32.1	21.1	25.1
UltraRAM(Mb)	-	-	-	-	0	22.5	-
DSP	1045	985	1368	1920	2520	2928	1973
GPIO(3.3V/HR/H D +	544 + 0	48 + 336	48 + 444	104 + 416	96 + 208	48 + 416	120 + 208 + 214
XCVR	24 (10 Gb/s)	24(17.4 Gb/s)	24(17.4 Gb/s)	20 (12.5 Gb/s)	28 (12.5 Gb/s)	20 (12.5 Gb/s) + 8 (25 Gb/s)	24 (12.5 Gb/s)
Size (mmxmm)	35 x35 (F1152)	35 x35 (F1152)	35 x35 (F1152)	35 x35 (A1156)	31x31 (E900)	35 x35 (A1156)	35 x35 (B1156)
Price(\$)	1360.6 for 744- 1000 pcs quote	\$1016.00 for 100- 1000 pcs	\$1550.00 for 100- 1000 pcs	\$1010.14 for 51- 300 pcs quote and \$769.45 for 301- 1000 pcs	\$1000.04 for 51- 300 pcs quote and \$760.84 for 301- 1000 pcs	\$1410.97 for 1- 499 pcs and \$1074.57 for 500- 1000 pcs	\$1050.88 for 36- 249 pcs quote and \$799.77 for 250- 1000 pcs

Technical Justification for CD-3A Procurement (1)


- WIB firmware used in ProtoDUNE-II so far has the interface for the FELIX readout, which has been working reliably since 2022
 - The FPGA resource utilization of WIB firmware is quite reasonable, with < 35% LUT usage
 - The usage of BRAM is relatively high, which is due to the ILA cores for debug purposes in the current firmware build

Technical Justification for CD-3A Procurement (2)

- The DUNE DAQ system is migrating to Ethernet based readout in 2023. A
 preliminary build of the WIB firmware with Ethernet interface is being
 tested
 - The FPGA resource utilization of WIB firmware is quite reasonable, with < 70% LUT usage
 - The LUT usage can be further optimized with improved design of the data alignment module if necessary
 - The usage of BRAM is relatively high, which is due to the ILA cores for debug purposes in the current firmware build
- WIB FPGA ZU6CG has sufficient resources for the production needs of DUNE far detector cold electronics readout system.

FPGA Procurement Plan

- The quote of XCZU6CG-1FFVB1156E was updated in early 2023 by Avnet
 - Step 2 price of \$1,322.31 each (up to 125 pieces)
 - Step 3 price of \$444.92 each (after 125 pieces)
 - 23 pieces will be consumed in Step 2 before unit price moves to Step 3
- For CD-3A procurement for FD1-HD, a total 800 WIB FPGAs will be ordered
 - The total cost will be 23 x \$1,322.31 + 777 x \$444.92 = \$376,115.97
- The order was processed at BNL with expected long lead time
 - Initial delivery date is December 2023, has been updated to August 2023

