Neutrinos :

# J-PARC neutrino facility upgrade for T2K and HK experiments

2023/3/20, Workshop at Argonne Lab. Ken Sakashita (KEK/J-PARC neutrino group)



## Neutrino oscillation

- Flavor changes during flight (quantum effect over macroscopic length)
- can evaluate the mass diff. and mixing



• in 3 flavor case, there are three mixing parameters ( $\theta_{12}, \theta_{23}, \theta_{13}$ ) and two mass differences ( $\Delta m_{21}^2, \Delta m_{32}^2$ ) and one complex phase ( $\delta_{CP}$ )  $^{3/23}$ 

## What we know up to now



## Do neutrinos violate CP symmetry ?

• It is still unknown but the size of CP violation of neutrino (PMNS) could be O(10<sup>3</sup>) larger than the quarks (CKM)

Jarlskog invariant (=size of CPV):  $J_{CP} = \sin\theta_{13}\cos^2\theta_{13}\sin\theta_{12}\cos\theta_{12}\sin\theta_{23}\cos\theta_{23}\sin\delta_{CP}$ 

 $J_{CP}^{CKM} \approx 3 \times 10^{-5}$   $\longrightarrow$   $J_{CP}^{PMNS} \approx 0.033 \times \sin \delta_{CP}$ 

• Neutrino are the possible source of CP violation which can explain the matter-antimatter asymmetry in the universe



EW Baryogenesis

There are models in which only PMNS CP phase can generation the matter-antimatter asymmetry.

[Nucl. Phys. B774 (2007) 1], [JHEP 03, 034(2019)] [arXiv:1609.05028. arXiv:1807.06582]

## T2K collaboration





#### ~528 members, 76 institutes, 14 countries

![](_page_6_Figure_0.jpeg)

- L=295km  $\rightarrow$  matter eff. is negligible
- Almost pure CPV measurement
- Beam power : 500kW (soon >750kW)
  - SK water Cherenkov detector

- L=810km → matter eff. is not negligible
- Sensitive to mass ordering
- ~900kW
- Segmented liquid scintillator detector (tracking, calorimetric)

#### **T2K and NOvA can provide complementary information** 7/23

## T2K : CPV results

- The first strong constraints on the  $\delta_{CP}$  parameter using the data until 2019 published on Nature paper (2020) DOI:10.1038/s41586-020-2177-0
- Latest results:

![](_page_7_Figure_3.jpeg)

Neutrino mode e-like candidates

T2K data prefers the maximal CP violation ( $\delta_{CP}$ = -90°). CP conservation is excluded at 90% C.L.

#### More statistics is needed 8/23

## Comparisons among T2K, NOvA and SK

![](_page_8_Figure_1.jpeg)

- **T2K-NOvA**, T2K-SK joint analysis are on-going : different energies, baselines and detector technologies
  - expect better sensitivity in mass ordering,  $\delta_{CP}$  and  $\theta_{23}$  octant due to resolved degeneracies and syst. constraints

### ND280 upgrade for T2K

## To better constrain neutrino interaction systematic errors

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_0.jpeg)

(bottom) when fitting the reconstructed  $CC0\pi$  data binned

constraint on FSI and to be able to cross-che rectness of FSI simulations through the inves

## J-PARC accelerators at Tokai

![](_page_11_Picture_1.jpeg)

![](_page_12_Figure_0.jpeg)

## J-PARC neutrino beamline

![](_page_13_Figure_1.jpeg)

## Neutrino beamline operation

- Accumulated 3.82×10<sup>21</sup> Protons On Target (2010 Jan. ~ 2021 Apr.)
- Replacement of radio-activated equipments(\*) were successfully performed several times
- Stable operation at 515kW has been achieved with no major issues

![](_page_14_Figure_4.jpeg)

(\*) horn, target and beam window are assumed to be periodically replaced

#### How can we realize 1.3MW operation ?

![](_page_15_Figure_1.jpeg)

Technical Design Report : arXiv:1908.05141 16/23

### Electromagnetic horn upgrade

me

pov

De

![](_page_16_Figure_1.jpeg)

New horn production/construction under cooperation w/ **Colorado U.** and FNAL

![](_page_16_Picture_3.jpeg)

#### New horn2 was successfully installed

(Previous) the He gas cooling

![](_page_16_Picture_5.jpeg)

horn#2

rip

![](_page_16_Picture_6.jpeg)

Guide frame for horn extractio

Remote sling machine for horn

Max 57.7°C

(< acceptable temp.)\*\*

Plan to resume beamline operation for T2K in April 2023

J-P/IRC

#### KEK/J-PARC - FNAL cooperation

#### LBNF neutrino beamline

![](_page_17_Picture_2.jpeg)

## He circulation system for target cooling

- Thermal insulation for high temperature He gas line under development
- Proof-of-principle test of vacuum insulation pipe revealed a promising result

![](_page_17_Picture_6.jpeg)

#### Air-Tightness Hatch cov

- Performance test with
  Fermilab engineers in J-PARC
- Requirement of 10<sup>-6</sup> Pa·m<sup>3</sup>/s satisfied

![](_page_17_Picture_10.jpeg)

## Feedthrough for stripline of Horn magnet

- Performance test and requirement satisfied
- Current testing prototype under development

![](_page_17_Picture_14.jpeg)

#### Hydrogen removal for Horn cooling water

- Critical component for high-power beam operation
- Hydrogen recombination sufficiently remove H₂ from 5%→0.1%/day
- Additionally introduced new ion-exchanger and O<sub>2</sub> de-gasifier for safer operation.

![](_page_17_Picture_19.jpeg)

some of these are common technical challenges toward high intensity facility

Based on over 10 years experience and R&D at J-PARC, we promote KEK-FNAL cooperation for LBNF

#### Advances in Proton Instrumentation

#### Extracted Beam Monitoring: FNAL→ J-PARC

 Assemble WSEM with Carbon-nano-tube wire (low-Z) at FNAL (2022), and test at J-PARC neutrino beam-line (2023~)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

**Recent progress in US-Japan** 

collaboration

#### WSEM w/ CNT Will be developed.

#### • High-power target facility issues

- Radiation hardened beam instrumentation
  - EMT, CT is under development (beam test : ~FY2021, ...)

![](_page_18_Figure_9.jpeg)

## How to reduce "Tritium" ?

- ✤ Cooling water activated by <sup>3</sup>H (Tritium)
- Radio-active water should be diluted and drained
- We recently increased the size of the dilution tank to increase the capability of water disposal
- Tritium contamination increases as increasing beam exposures → need to consider appropriate treatment of the <sup>3</sup>H
- R&D to understand Tritium production and knowledge sharing on Tritium treatment are in progress among US-Japan collaboration

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

~25GBq HTO produced per 1x10<sup>20</sup>POT In Horn/TS He Vessel/Decay Volume Cooling Water

![](_page_19_Picture_10.jpeg)

~6 times larger dilution tank has been newly constructed

## Hyper-K experiment

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

~520 members, 101 institutes, 20 countries

- New 260 kton water Cherenkov detector
  (Fiducial vol. = 190kton which is 8.4 times larger than Super-K)
- ♦ Upgrade of J-PARC neutrino beam ( $0.5 \rightarrow 1.3$ MW)
- Upgrade of neutrino near detectors

Neutrino Near detectors

#### Far detector

#### J-PARC accelerator & neutrino beamline

![](_page_20_Picture_10.jpeg)

**Construction on-going.** Plan to start data taking in 2027

![](_page_21_Picture_0.jpeg)

#### Status of PMT production and delivery

![](_page_21_Picture_2.jpeg)

Visual inspection & Testing signal for all the PMT is on-going

## Summary

- J-PARC neutrino facility and its upgrade works for T2K and HK experiments are introduced
- Some of upgrade works are performed under strong international and domestic collaboration
- We will continue the US-Japan joint R&D to realize a Mega-Watt class high intensity neutrino beam fro long baseline neutrino oscillation experiments (T2K,NOvA,HK and DUNE)

#### backup

#### T2K results on Jarlskog invariant

 $J_{CP} = \sin\theta_{13} \cos^2\theta_{13} \sin\theta_{12} \cos\theta_{12} \sin\theta_{23} \cos\theta_{23} \sin\delta_{CP}$ 

![](_page_24_Figure_2.jpeg)

T2K data prefers largest (negative) CP violation.

sign is also sensitive to Leptogenesis models [arXiv:2005.01039]

## Understanding of Tritium behavior

- We observed <sup>3</sup>H from steel wall to water at J-PARC neutrino beamline.
- Discussion started among FNAL, CERN, J-PARC (also muon facility) for similar issues.
- To understand <sup>3</sup>H release from materials, need to evaluate diffusivity and solubility of the <sup>3</sup>H.

![](_page_25_Figure_4.jpeg)

![](_page_25_Figure_5.jpeg)