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The importance of HF PDFs

o Intrinsic vs extrinsic, i.e., perturbative vs non-perturbative (fitted)? (see Nadoisky's talk]
@ Can data tell the difference?
@ Heavy flavor mass: dynamics (ME) and kinematics (phase space or threshold)

o Multiple scales: Q(pr) vs mg. PDF resums large logarithms o log(QQ/mQQ)
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HF at hadron colliders

Data:

@ Heavy-flavor hadron (D, B-meson) production, especially LHCb
@ Z+b/c production isee oetichers talk]

@ Neutrino resource measured at the FASER as well as other FPFs
Theoretical interests:

@ pQCD: factorization theorem, scale uncertainty, fragmentation, etc.
@ PDF: Forward heavy flavor production probes gluon PDF at small z.
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Massive Fixed-Flavor-Number (FFN) scheme
For consistency, we should take Ny = 3(4) for charm(bottom) flavor production, in
both ¢; and PDF running.

@ The heavy-quark running in the virtual loops is missing.

o No Flavor Excitation (FE) contributions as no heavy-flavor PDF.

(=l

Inconsistency when using Ny =5 PDF in MCFM, MadGraph_aMC@NLO, POWHEG,
@ Ny =5 in the oy running, e.g. reading directly from LHAPDF;
e No FE contributions, equivalent to Ny = 3(4) in the PDFs.

We need treat heavy flavor consistently.
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Theory for heavy-flavor production
Energy scale @, such as invariant mass Mgq or pr
e @ < m (low energy), Flavor Creation (FC), massive FFN scheme (Ny)
@ @ > m (high energy), Flavor Excitation (FE), Zero-mass (ZM) scheme
(Nf+1), resum a"log™(Q?/m?) as heavy-flavor PDF (massless)
@ @ ~ m, General-mass (GM) variable flavor number (VFN) scheme
matching: subtracting the double-counted terms
VFN =FC+FE—-SB
o Q@ <m, FE~SB, VFN — FC FFN scheme
e Q> m, FC~SB, VFN — FC ZM scheme
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ACOT scheme
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ACOT scheme
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° @ = mq, mg matters, fo(z,u)~ 0, Flavor Creation (FFN 3-flv).
o Q> mg, mg~0, fo(z,u) matters, Flavor Excitation (ZM 4-flv).
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ACOT series

Aivazis-Collins-Olness-Tung prowsey introduce an asymptotic subtraction (SB)
term to get rid of the double-counting between Flavor Creation (FC) and Flavor
Excitation (FE), which switches from Ny to Ny +1 scheme (Variable Flavor
Number Scheme).
ACOT =FC-SB+FE

e Q2 mq, SB ~ FE, ACOT — FFN 3-flv scheme;

o Q> mg, SB~FC, ACOT — ZM 4-flv scheme.
Simplified-ACOT scheme . coliins PRD1998, M. Kramer et al., PRD2000] treats heavy-quark as
massless in Flavor Excitation. Warning: instability in the cancellation between SB
and FE around the switching point.

The S-ACOT-Y scheme w. Tunget ai., 01102477 introduces rescaling variable

x = z(1+4mZ /Q?) to capture the mass threshold effect.

It stabilizes the perturbative convergence near the switching point by enforcing
energy-momentum conservation in all scattering contributions.

The S—ACOT—mT scheme [I. Helenius et al., 1804.03557]

The S-ACOT-MPS k. xie et i 2108037411 Scheme extends the S-ACOT-) method to
hadron-hadron collisions.
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Ratio to CT18NLO

Formulation of the S-ACOT-MPS scheme
o FC+FE-SB
orc = Zfi(xiv,u2)fj($j>ﬂ2)aij%QX;
1,
OFE = Zfi(xia.uz)fQ(zQa.uz)aiQaQX +(i ¢ Q),

osB = Y fi(zi,17)[Po; ® fi](z0. 1) Gig—ox + (i ++ Q).
,J
@ We can define the subtracted and residual PDFs
Jo(z.u?) =Y [Pg; @ f)(z,u?), 8fg(z,u?) = [fo —fol(z,u?)
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The massive phase space
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Caveat: The Lorentz violation for the heavy parton

L2 _ 2_ 2
Py = ZPproton - pproton =0+ Py = My
We enforce £y = 2FyLeam > Mp.

A correction term & (m?/Q?) needs to be got back order by order. 015



Bottom production at LHCb
Scale (up,ur)=(1/2,1,2), /p2T7b + m? uncertainty is large:

@ as(uR) is large and varies drastically around g ~ mg,
e Heavy-flavor PDF fo(z,1F) starts to be generated perturbatively at pip = mg.
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Charm production in the forward region
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Charm quark fraction (c+cb)/(ub+db) Q =2 GeV

@ Charm production in the forward region are
sensitive to both small and large = charm and
gluon PDFs.

@ Intrinsic charm can potentially show up in the
large z region.

@ Both the LHCb and the FASER measurement
can provide probe to the gluon at small z and
s intrinsic charm at large z.
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Final-state fragmentation
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Towards a global analysis of heavy-flavor data

@ Generalize the S-ACOT-MPS to NNLO for proton-proton collisions
@ NLO tables for fast computation are available on HEPForge

» Downloads
: GiHub The Simplified ACOT scheme with Massive Phase Space

Manual

Contact « Keping Xie (PITT PACC)

* John Campbell (Fermilab)
« Pavel Nadolsky (SMU)

@ Need the NNLO/NLO K-factors

@ At this stage, it is already technically possible to perform a global PDF analysis

within the CTEQ framework.
o Data: Z+b and b/c production at the LHC (not exhaustive) (see Bocticher's taikl.

CMS collaboration, A. M. Sirunyan et al., Measurement of the associated production of a Z boson with
charm or bottom quark jets in proton-proton collisions at /3 = 13 TeV, Phys. Rev. D 102 (2020) 032007

200106899 LHCB collaboration, R. Aaij et al., of the B prod

ATLAS ion, G. Aad et al., of the production Jfor a Z boson in in pp collisions at \/s = 7 and 18 TeV, 1710.04921.

association with b-jets in proton-proton collisions at v/s = 13 TeV with the ATLAS detector, JHEP 07 .

(20%0) 044 (2003. 11960], ATLAS G. Aad et al., of the inclusive and dijet
s o Kt ot asscited prodction of o 2 toson a5 CTOSS-S6Ctions of b~ jets in pp collisions at /5 =7 TeV’ with the ATLAS detector,

jets in pp collisions at v/ =8 TeV, e Phy: J. C 77 (2017) 751 [1611.06507) Bur. Phys. J. CT1 (2011) 1846, [1109.6833].

ATLAS collaboration, G. Aad et al., Measurement of differential production cross-sections for a Z boson  CMS collaboration, S. Chatrchyan et al., Inclusive b-jet production in pp collisions at
in association with b-jets in 7 TeV proton-proton collisions with the ATLAS detector, JHEP 10 (2014) /5 7 Toy, JHEP 04 (2012) 084, [1202. 46171
141 [1407.3643)

CMS collaboration, S. Chatrchyan et al., Measurement of the production cross sections for a Z boson and B. A. Kniehl, G. Kramer, I. Schi in and i , Inclusive Charmed-Me
one or more b jets in pp collisions at sqrt(s) = 7 TeV, JHEP 06 (2014) 120 [1402. 1521). Production at the CERN LHC, Eur. Phys. J ©72 (2012) 2082, [1202.0439).

Needs better control on the systematics, but measurement ratios can in
principle be used.
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CT14 HeSSian prOfiIing With ePump [C. Schmidt et al., 1806.07950]

LHCbBX(w10): CT14 PDF updated with wight 1(10) LHCb B data.
Caveat: We treat the systematic errors as uncorrelated, since we do not have the full
correlated uncertainties.
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We observe the impact on gluon PDF, but still mild, because
o CT14 PDF describe the data very well,

@ The experimental uncertainties are still large.
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Summary
@ We develop S-ACOT-MPS scheme for the heavy flavor production at hadron
colliders

o Inclusive heavy quark production from both Flavor Creation and Flavor
Excitation;

o The double-counted term from gluon splitting is subtracted,;

o We introduce massive phase space to capture the threshold effect.

@ We obtain good cancellations behaviors in both asymptotic limits:

o pp K< mgq, the SB cancels the FE term, FFN scheme,
e pr > mgq, the SB cancels the FC term, ZM scheme.

@ Our calculations agree well with the LHCb B* measurements.

@ With theoretical uncertainties cancel significantly, the ratio observables impact
the gluon-PDF in the small-z region. The precise data in next rounds can
potentially provide strong constraints.

@ Implementation in MCFM can be easily extended to NNLO.

o We have obtained the subtraction fo = Pg, ® g and residual 8fg = fo —fo
PDF, which can be easily applied to other heavy-flavor process, such as
H/V + Q. Available on HEPForge.

o Fast computation tables are generated, to be implemented in global analysis.
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