Baryogenesis and Dark Matter in the Mirror Twin Higgs

Pedro Bittar

PhD @ University of São Paulo (Visiting UChicago until December)

July 11, 2023

Standard Model at the LHC Workshop – Fermilab, Batavia IL 60510, USA

Theory-driven models before

1. Electroweak scale stability: SUSY

2. Dark Matter = WIMPs

3. Gauge Unification + Baryogenesis

Theory-driven models before

- **1. Electroweak scale stability: SUSY**→ Challenged by LHC data
- **2. Dark Matter = WIMPs** \rightarrow Challenged by DM detection
- 3. Gauge Unification + Baryogenesis

→ Challenged by proton decay experiments → High energies make difficult to look for...

This talk: Another Option

Mirror Twin Higgs Model

1. EW Stability: Neutral Naturalness

2. DM: Asymmetric Dark Matter

3. Baryogenesis \leftrightarrow **Dark Matter**

Mirror Twin Higgs Model

Higgs = pNGB

 $SU(4) \times U(1) \rightarrow SU(3) \times U(1) \subset [SU(2)_L \times U(1)_Y]_{\text{Local}}$

Gauge/Yukawa generate a potential for the Higgs.

 \mathbb{Z}_2 parity \longrightarrow Restores the full SU(4) symmetry of the potential

Consequences of the Z², symmetry

- Mirror copy of the SM
- Hierarchy Problem → Neutral Naturalness
- Twin Sector \rightarrow Dark Sector
- Cosmology,

Sandbox to connect different BSM problems

The Twin Higgs Model

- Soft Z_2 breaking \rightarrow Safe for the HP (Masses)
- Hard Z_2 breaking \rightarrow Reintroduces the HP (Couplings)

Dark Matter in the Twin Higgs

 $Z_2 + Dark \ B \rightarrow Built-in \ candidates \ for \ DM = Twin \ Nucleons$

$$\label{eq:asymmetric} \mathbf{\Delta}_{DM} \simeq 5 \Omega_{Baryons}$$
 Dark Matter

Common origin of visible and dark matter

Twin Dark Matter is naturally ADM

Dark Matter in the Twin Higgs

However ...

$$\frac{\tilde{\Lambda}_{QCD}}{\Lambda_{QCD}} = \left(\frac{f}{v}\right)^{2/9}$$

$$f/v \sim 3 \longrightarrow \Lambda_{QCD_B} \sim 1.4 \Lambda_{QCD_A}$$

$$m_{p,\text{twin}} \simeq 1.4 m_p$$
Twin Dark Matter cannot
be much heavier than this...
$$\frac{\Omega_{DM}}{\Omega_{Baryons}} = \left(\frac{n_{DM}}{n_{VM}}\right) \frac{m_{DM}}{m_p} \neq 5 \longrightarrow \frac{\text{Whereas...}}{m_{DM} \simeq 5 m_N}$$

Dark Matter in the Twin Higgs

Our approach: 1. Choose a baryogenesis model for the visible sector. 2. Use the Z₂ to copy the mechanism to the twin sector.

[Literature] • Farina, JCAP 11 (2015) 017.

- Farina, Phys.Rev.D 94 (2016) 3, 035017.
- Garcia Garcia, Phys.Rev.Lett. 115 (2015) 12, 121801.

Hard Z₂ breakings in QCD/Yukawa couplings
 Connect the two sectors with portals beyond the Higgs

It is possible to increase the twin DM mass by brute force.

We do not want that.

Baryogenesis Model

Example: Low-temperature Baryogenesis

Generate the B asymmetry directly through <u>out-of-equilibrium decays</u>

Window: T_{BBN} < T_{baryogenesis} < T_{Sphalerons}

Baryogenesis Model

Need: • 2 flavors of N_{$$\alpha$$} α =1,2.
• 1 colored X

$$\Delta \mathcal{L}_{\text{Baryogenesis}} = \lambda_{i\alpha} N_{\alpha} u_i^c X + \lambda_{ij}' d_i^c d_j^c \bar{X} - M_{\alpha} N_{\alpha} N_{\alpha} + M_X^2 X \bar{X}$$

Decay of N1 generates the baryon asymmetry

Baryogenesis Model

- > Assume that N1 was efficiently produced in the early universe.
- Calculate the Baryon asymmetry from N1's Yield and the CP asymmetry.

Asymmetric Dark Matter

What about dark matter?

<u>Same story</u>: Copy $\Delta \mathcal{L}_{Baryogenesis}$ with the the Z₂ symmetry

(We do not want hard Z₂ breakings)

Twin Baryogenesis

Different phases between the SM and the Twin sectors

- Phases do not reintroduce the Hierarchy Problem
- A priori, no reason for equal phases since we do not provide any mechanism that generate them

Analogies:

- "Vacuum misalignment"
- "Ferromagnets"
- "Twin CKM phase"

The same reasoning apply to different baryogenesis models: <u>i.e. High temperature Leptogenesis</u>

Twin Baryogenesis

Different phases between the SM and the Twin sectors

Direct Detection: Vector interaction

Baryogenesis and Dark Matter in the Mirror Twin Higgs – ArXiv 2307.04662 – Pedro Bittar

Direct Detection: Scalar interaction

Baryogenesis and Dark Matter in the Mirror Twin Higgs – ArXiv 2307.04662 – Pedro Bittar

What about the LHC?

Low temperature Baryogenesis ↔ New colored particles at TeV

• Theory-motivated models of GeV DM might start receiving attention once we reach the neutrino fog.

 \rightarrow Low scale baryogenesis is specially interesting for the Twin Higgs.

- Scalar di-quarks/Leptoquarks
- Hadronic displaced vertices

From the Twin Higgs side \rightarrow New physics is naturally hidden

- Higgs couplings modifications
- Higgs invisible decays

Theory motivation for experiment

Summary

1. Twin Higgs as a sandbox for connecting different BSM phenomena

2. Baryogenesis model $\xrightarrow{Z_2 Copy}$ DM genesis model

3. Phase misalignment: CP violating phases can be different in the mirrored sector

4. Look forward for direct detection around ~1 GeV!

