SM prediction for the CP asymmetries in two-body hadronic charm decays

Eleftheria Solomonidi
In collaboration with Antonio Pich \& Luiz Vale Silva Based on hep-ph/2305.11951 and upcoming publication

July 11
SM@LHC 2023

Introduction

Charm Physics in the limelight

- Complementary to K and B Physics (CKM parameters) but different (masses)
- Experimental programme is growing (LHCb, Belle II, BESIII)

Rare decays
Mixing
CP violation in decays

- CPV in hadronic D modes: only discovery of CPV in the charm sector
- Plus new result of $K K$ has puzzling implications

A new Flavour Physics 'anomaly' or an incomplete theory prediction?

$$
\begin{aligned}
& \Delta A_{C P}^{e x p} \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=[-1.54 \pm 0.29] \cdot 10^{-3} \\
& \Delta A_{C P}^{\text {direexp }}=[-1.57 \pm 0.29] \cdot 10^{-3}[\text { LHCb 2019 }] \\
& A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=[6.8 \pm 5.4(\text { stat }) \pm 1.6(\text { syst })] \cdot 10^{-4}[\text { LHCb 2022 }] \\
& A_{C P}^{\operatorname{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=[23.2 \pm 6.1] \cdot 10^{-4}
\end{aligned}
$$

- Is the SM theoretical prediction in agreement? Is it NP? [see e.g. 2210.16330]
- Weak sector (CKM parameters) probed by $K \& B$ physics

- Strong sector (hadronic uncertainties) problematic

Weak and strong, short and long distance

$$
\begin{array}{r}
\mathscr{A}\left(D^{0} \rightarrow f\right)=A(f)+\operatorname{ir}_{C K M} B(f) \\
\mathscr{A}\left(\overline{D^{0}} \rightarrow f\right)=A(f)-\operatorname{ir}_{C K M} B(f) \\
a_{C P}^{\operatorname{dir}} \approx 2 r_{C K M} \frac{|B(f)|}{|A(f)|} \cdot \sin \arg \frac{A(f)}{B(f)}
\end{array}
$$

From the short distance front:

$$
\begin{aligned}
& \mathscr{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}}\left[\Sigma_{i=1}^{2} C_{i}(\mu)\left(\lambda_{d} Q_{i}^{d}(\mu)+\lambda_{s} Q_{i}^{s}(\mu)\right)-\lambda_{b}\left(\Sigma_{i=3}^{6} C_{i}(\mu) Q_{i}(\mu)+C_{8 g}(\mu) Q_{8 g}(\mu)\right)\right] \\
\lambda_{q}=V_{c q}^{*} V_{u q}, \quad q=d, s, b . & r_{C K M}=\operatorname{Im} \frac{V_{c c}^{*} V_{u b}}{V_{c d}^{*} V_{u d}} \approx 6.2 \cdot 10^{-4} \\
\left|\lambda_{d}\right| \approx\left|\lambda_{s}\right|=\mathscr{O}(\lambda) &
\end{aligned}
$$

Current-current operators

$$
\begin{aligned}
& Q_{1}^{q}=(\bar{q} c) v-A(\bar{u} q)_{V-A} \\
& Q_{2}^{d}=\left(\bar{q}_{j} c_{i}\right)_{v-A}\left(\bar{u}_{i} q_{j}\right) v_{-A} \\
& \quad(q=d, s)
\end{aligned}
$$

Penguin operators

$$
\begin{aligned}
& Q_{3}=(\bar{u} c) V-A^{\Sigma_{q}(\bar{q} q)} V-A \\
& Q_{4}=\left(\bar{u}_{j} c_{i}\right) V-A^{\Sigma q}\left(\overline{(}_{i} q_{j}\right)_{V-A} \\
& Q_{5}=(\bar{u} c)_{V-A} \Sigma_{q}(\bar{q} q) V+A \\
& Q_{6}=\left(\bar{u}_{j} c_{i}\right) V-A^{\Sigma}{ }_{q}\left(\overline{\bar{q}}_{i} q_{j}\right)_{V+A}
\end{aligned}
$$

$C_{4,6}<0.1 C_{2}, 0.03 C_{1}$ (GIM mechanism at play)

Weak and strong, short and long distance

$$
\begin{array}{r}
\mathscr{A}\left(D^{0} \rightarrow f\right)=A(f)+i r_{C K M} B(f) \\
\mathscr{A}\left(\overline{D^{0}} \rightarrow f\right)=A(f)-\operatorname{ir}_{C K M} B(f) \\
a_{C P}^{d i r} \approx 2 r_{C K M} \frac{|B(f)|}{|A(f)|} \cdot \sin \arg \frac{A(f)}{B(f)}
\end{array}
$$

From the short distance front:

$$
\begin{array}{ll}
& \mathscr{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}}\left[\Sigma_{i=1}^{2} C_{i}(\mu)\left(\lambda_{d} Q_{i}^{d}(\mu)+\lambda_{s} Q_{i}^{s}(\mu)\right)-\lambda_{b}\left(\Sigma_{i=3}^{6} C_{i}(\mu) Q_{i}(\mu)+C_{8 g}(\mu) Q_{8 g}(\mu)\right)\right] \\
\lambda_{q}=V_{c q}^{*} V_{u q}, \quad q=d, s, b . & r_{C K M}=\operatorname{Im} \frac{V_{c c}^{*} V_{u b}}{V_{c d}^{c d} V_{u d}} \approx 6.2 \cdot 10^{-4} \\
\left|\lambda_{d}\right| \approx\left|\lambda_{s}\right|=\mathscr{O}(\lambda) &
\end{array}
$$

Problem: hadronic matrix elements

$$
\langle h h| Q_{i}\left|D^{0}\right\rangle
$$

Charm scale is special!

$$
\begin{aligned}
& \Lambda_{\chi P T} \approx m_{\rho}<m_{D}=1865 \mathrm{MeV} \\
& \frac{\Lambda_{Q C D}}{m_{c}}=\mathscr{O}(1)
\end{aligned}
$$

A way to look at the problem: rescattering

- Strong process, blind to the weak phase
- Isospin ($u \leftrightarrow d$) is a good symmetry of strong interactions

- In $\mathrm{I}=0$, two channels:

$$
S_{\text {strong }}=\left(\begin{array}{ll}
\pi \pi \rightarrow \pi \pi & \pi \pi \rightarrow K K \\
K K \rightarrow \pi \pi & K K \rightarrow K K
\end{array}\right)
$$

Rescattering \& what we learn about strong phases

- S matrix is unitary, as well as strong sub-matrix

- The phases are related to the rescattering phases which are known from data/nuclear experiments
- Watson's theorem (elastic rescattering limit):
$\arg A(D \rightarrow \pi \pi)=\arg A(\pi \pi \rightarrow \pi \pi) \bmod \pi$
- With inelasticities: more complicated, phase-shifts dependent on magnitudes of the amplitudes too

Magnitudes of matrix elements without rescattering

At the limit of $N_{c} \rightarrow \infty$, we are only left with the matrix elements from factorisation

(Same for $D \rightarrow K K$)

- Non-rescattering " bare" amplitudes:

$$
T^{B}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \propto \lambda_{d} C_{1}\left\langle\pi^{+} \pi^{-}\right| Q_{1}\left|D^{0}\right\rangle_{\text {fac }}-\lambda_{b}\left(C_{4}\left\langle\pi^{+} \pi^{-}\right| Q_{4}\left|D^{0}\right\rangle_{f a c}+C_{6}\left\langle\pi^{+} \pi^{-}\right| Q_{6}\left|D^{0}\right\rangle_{\text {fac }}\right)
$$

- Form factors are at the non-rescattering limit!
- Decay constant and form factor come from lattice and data (through $\chi \mathrm{PT}$)
- Internal gluon exchanges at each current are naturally included (but internal quark loops are suppressed)

Basic property of scattering amplitudes: analyticity

- Fundamental, model-independent property related to causality
- Cauchy's theorem:
$A(s)=\frac{1}{2 \pi i} \oint_{C} d s^{\prime} \frac{A\left(s^{\prime}\right)}{s^{\prime}-s}$ leads to

$$
\operatorname{Re} A(s)=\frac{1}{\pi} \int_{s_{t t r}}^{\infty} d s^{\prime} \frac{\operatorname{Im} A\left(s^{\prime}\right)}{s^{\prime}-s}
$$

(Dispersion relation)

- Unitarity of S-matrix \& dispersion relation:

$$
\underbrace{\operatorname{Re} A(s)}_{\text {Re at a point }}=\frac{1}{\pi} \underbrace{\int_{s_{t h r}}^{\infty} d s^{\prime} \frac{\tan \delta\left(s^{\prime}\right)}{s^{\prime}-s} \operatorname{Re} A\left(s^{\prime}\right)}_{\text {integral of } \operatorname{Re} \text { along the physical region }}
$$

Analyticity \& what we learn about magnitudes

- Integral equation, studied by Muskhelishvili-Omnes
- One subtraction: needs one piece of physical information
- Single channel case (\& one subtraction at s_{0}), physical solution:

$$
\left|A_{l}(s)\right|=\underbrace{A_{l}\left(s_{0}\right)}_{\text {ampl. when } \Omega}=1 \underbrace{\exp \left\{\frac{s-s_{0}}{\pi} P V \int_{4 M_{\pi}^{2}}^{\infty} d z \frac{\delta_{l}(z)}{\left(z-s_{0}\right)(z-s)}\right\}}_{\text {Omnes factor } \Omega}
$$

We need more than just large N_{C} !
$\left|A_{l}\left(s=m_{D}^{2}\right)\right|=\left(\right.$ large N_{C} result $) \times($ Omnes factor $)$,

- More channels: Equally more solutions. No analytical solution

What we do

Summary of our method

- Factor out weak phases
- Flavour basis to isospin
- Isospin blocks:
- $\mathrm{I}=0$, unitarity with 2 channels: $\pi \pi$ and $K K$
- $\mathrm{I}=1$ with $K K$ elastic rescattering
- I=2 with $\pi \pi$ elastic rescattering
- Isospin amplitudes treated with dispersion relations calculated numerically (based on Moussallam et al. [hep-ph/9909292])
- Use inelasticity and phase-shift parametrisations [Pelaez et al., 1907.13162]|Pelaee et al, 2010.11222] up to energies $\sim m_{D}$ - extrapolate for higher \& consider uncertainties
- For $\mathrm{I}=1$ and 2, extract \mid Omnes factors from Br's of $A\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right) \sim A_{I=2}, A\left(D^{+} \rightarrow K^{+} \overline{K^{0}}\right) \sim A_{I=1}$, phases left unconstrained
- Decay-specific physical input: large N_{C} limit (for subtraction constant)

Choice of Omnes factors

For the isospin $=0$ channels we calculate numerically the Omnes matrix at $s=m_{D}^{2}$

	solution I	volution II	solutioca III
m, $m^{*}-1$		$\mathrm{I}^{(6)}-\left(\begin{array}{lll}0.39 e^{+1.644} & 0.59 e^{-2124} \\ 0.51 e^{-1.46} & 0.56 e^{+24 .}\end{array}\right)$	
	$\Omega^{(0)}=\left(\begin{array}{ll}0.66 e^{+184} & 0.61 e^{-1.134} \\ 0.57 e^{-1.44} & 0.58 e^{+234}\end{array}\right)$		
		$18^{60}-\left(\begin{array}{lll}0.43 e^{+1.044} & 0.58 e^{-210 i} \\ 0.52 e^{-1.3 i t} & 0.57 e^{+2.48 i}\end{array}\right)$	$a^{(0)}-\left(\begin{array}{ll}0.40 e^{+1051} & 0.80 e^{-2501} \\ 0.50 e^{-1.46} & 0.56 e^{+25 a t}\end{array}\right)$
为-sing. $\mathrm{m}_{4}^{*}-3$			$00^{(01)}-\left(\begin{array}{ll}0.45 e^{+0.916} & 0.86 e^{-253 t} \\ 0.50 e^{-1546} & 0.57 e^{+2504}\end{array}\right)$
		$\mathrm{N}^{(0)}=\left(\begin{array}{ccc}1.91 e^{+0.021} & 2.78 e^{-2.851} \\ 0.31 e^{-0.51} & 0.45 e^{+7.301}\end{array}\right)$	$\mathrm{a}^{\text {(0) }}=\left(\begin{array}{ll}2.20 e^{+0.431} & 3.55 e^{-2.24 t} \\ 0.35 e^{+0.34,} & 0.57 e^{+840}\end{array}\right)$
sot C: \log	$S^{(0)}=\left(\begin{array}{ll}1.85 e^{+1.381} & 2.65 e^{-1.801} \\ 0.34 t^{-0.85} & 0.57 e^{+8001}\end{array}\right)$	$N^{(0)}=\left(\begin{array}{ll}1.80 e^{+0.021} & 3.11 e^{-2851} \\ 0.29 e^{-1241} & 0.49 e^{+1241}\end{array}\right)$	

Choice of Omnes factors

For the isospin $=0$ channels we calculate numerically the Omnes matrix at $s=m_{D}^{2}$

	solution 1	volution II	molutioa III

- We examine the branching fraction predictions for the decays $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, K^{+} K^{-}, K^{0} K^{0}$ based on each Omnes matrix separately
- Only a few of them give simultaneously correct Br values for all channels:

(Br -prediction)/(Br-exp)

- DO->K+K-
- DO->KOKO

Choice of Omnes factors

For the isospin $=0$ channels we calculate numerically the Omnes matrix at $s=m_{D}^{2}$

	solution 1	salution in	molution III
	$\left(\begin{array}{ll} 0.56++1.84 t & 1.61 e^{-1725} \\ 0.57 e^{-124} & 0.58 e^{2525} \end{array}\right)$	$-\left(\begin{array}{l} 0.12 e^{+1.56} \\ 0.0 .54 e^{-2051} \\ 0.3 e^{-1.20} \\ 0.056 e^{2}+241 \end{array}\right)$	
min			
	$x^{(0)}=\left(\begin{array}{ll} 0.60+175 i, & 0.66 e^{-182} \\ 0.60 e^{-185} & 0.83 r^{2}+2.1 \end{array}\right)$		
sol. Bt: \|fic			

- We examine the branching fraction predictions for the decays $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, K^{+} K^{-}, K^{0} K^{0}$ based on each Omnes matrix separately
- Only a few of them give simultaneously correct Br values for all channels:

(Br -prediction)/(Br-exp)

Results

Rescattering quantified

With the branching fractions correctly reproduced (old $D \rightarrow \pi \pi$, KK puzzle seems to be solved!) the Omnes matrix looks like:

$$
\Omega_{I=0}=\left(\begin{array}{cc}
0.58 e^{1.8 i} & 0.64 e^{-1.7 i} \\
0.58 e^{-1.4 i} & 0.61 e^{2.3 i}
\end{array}\right)
$$

The physical solution is

$$
\binom{\mathbf{A}(D \rightarrow \pi \pi)}{\mathbf{A}(D \rightarrow K K)}=\Omega_{I=0} \cdot\binom{\mathbf{A}_{\text {factorisation }}(D \rightarrow \pi \pi)}{\mathbf{A}_{\text {factorisation }}(D \rightarrow K K)}
$$

It turns out:

Significant rescattering between the two final states!

penguin insertions \approx tree insertions (of curr.-curr. operators, for $\mathrm{I}=0$ reduced matrix elements)

CP asymmetries

charged meson channels neutral meson channels

$$
\Delta A_{C P}^{\text {dir, exp }}=(-1.57 \pm 0.29) \cdot 10^{-3}
$$

With $\delta(I=2, \pi \pi), \delta(I=1, K K)$ around the chosen values, we predict:

$$
\Delta A_{C P}^{\text {dir, theo }} \sim 5 \cdot\left(10^{-4}\right)!!
$$

$$
\begin{gathered}
\text { and } a_{C P}^{\text {dir }}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 3 \cdot 10^{-4}, \\
a_{C P}^{\text {dir }}\left(D^{0} \rightarrow K^{+} K^{-}\right) \approx-2 \cdot 10^{-4} \\
a_{C P}^{\text {dir }} \approx 2 \underbrace{r_{C K M}}_{\sim 6 \cdot 10^{-4}} \underbrace{\frac{|B(f)|}{|A(f)|}}_{\sim 1 / 3} \cdot \underbrace{\sin \arg \frac{A(f)}{B(f)}}_{\sim 1}
\end{gathered}
$$

NB: Short-distance penguins also not negligible for the CP asymmetries: C_{6} small but annihilation insertion very large so that $C_{6}\left\langle Q_{6}\right\rangle_{\text {fac }} \sim C_{1}\left\langle Q_{1}\right\rangle_{\text {fac }}$

With fewer uncertain strong parameters (preliminary)

- $\pi \pi, K K$ inelasticity has large uncertainties
- Use only one low-energy strong phase for isospin 0 : $\pi \pi+K K$ phase

- Assumption: 2-channel unitarity \rightarrow CPT/unitarity theorem also applying
- We manage to constrain:

$$
\begin{aligned}
0 & <a_{C P}(\pi \pi)(0-0) \lesssim 5 \times 10^{-4} \\
-3 \times 10^{-4} & \lesssim \operatorname{aCP}(K K)(0-0)<0
\end{aligned}
$$

- The CP asymmetry from $I=2 / 0$ interference is not constrained, but would require very large values of isospin-0 Omnes matrix elements

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity; YES isospin, NO SU(3) assumptions

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity; YES isospin, NO $S U(3)$ assumptions
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity; YES isospin, NO SU(3) assumptions
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^{+} \pi^{-}$too small compared to the experimental value!

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity; YES isospin, NO $S U(3)$ assumptions
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^{+} \pi^{-}$too small compared to the experimental value!
- CPV in $D^{0} \rightarrow \pi^{0} \pi^{0}$ should be of similar magnitude (could experiments look there?)

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity; YES isospin, NO SU(3) assumptions
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^{+} \pi^{-}$too small compared to the experimental value!
- CPV in $D^{0} \rightarrow \pi^{0} \pi^{0}$ should be of similar magnitude (could experiments look there?)
- Future directions: diferent isospin-2 scenarios, more channels in isospin-0?
- But these are naively not expected to change the picture...

Thank you very much!

BACKUP

Isospin-2 and -1 fixing

$$
\begin{gathered}
\mathscr{A}\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)=\frac{3}{2 \sqrt{2}} A_{I 2}^{\pi} \\
\mathscr{A}\left(D^{+} \rightarrow K^{+} \overline{K^{0}}\right)=A_{I 1}^{K}
\end{gathered}
$$

We fix $\left|A_{12}^{\pi}\right|,\left|A_{11}^{K}\right|$ from the Br's and use them in e.g.

$$
\mathscr{A}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\frac{1}{2 \sqrt{3}} A_{12}^{\pi}+\frac{1}{\sqrt{6}} A_{10}^{\pi}
$$

If $\mathrm{I}=2$ elastic then $A_{12}^{\pi}=\Omega_{I=2} A_{f a c, I=2}$
If inelastic $A_{l 2}^{\pi}=\Omega_{I=2} A_{\text {fac }, l=2}+$ (mixing) but we use directly $A_{12}^{\pi}=\left|A_{12}^{\pi}\right| \exp \left\{i \delta_{l=2}^{\pi \pi}\right\}$, phase left free

Naive estimate of final state interaction effects

$$
\binom{A_{\pi}^{I=0}}{A_{K K}^{l=0}}=S_{S}^{1 / 2} \cdot\binom{A_{\pi}^{l=0}=0, \text { bare }}{A_{K K, ~ b a r e ~}^{l=}}
$$

bare amplitudes: from factorisation (no strong phases) Reproduces correctly Watson's theorem What unitarity gives:

$$
\binom{A_{\pi}^{l=0}}{A_{K K}^{\prime}=0}=S_{S} \cdot\binom{\left(A_{\pi}^{l=0}\right)^{*}}{\left(A_{K K}^{\prime \prime \pi}\right)^{*}}
$$

No direct solution for the amplitudes, just relates them to the phases:

$$
\begin{aligned}
& \arg A_{\pi \pi}^{l=0}=\delta_{1}+\arccos \sqrt{\left.\frac{(1+\eta)^{2}-\left(\left.\frac{\left|A^{\prime} A^{\prime}\right|=0}{\left|A_{A}\right|=\pi \mid} \right\rvert\,\right.}{4 \eta}\right)^{2}\left(1-\eta^{2}\right)} \\
& \arg A_{K K}^{\prime=0}=\delta_{2}+\arccos \sqrt{\frac{\left.(1+\eta)^{2}-\left(\frac{\left|A^{\prime}\right|=0}{\left|A_{k K}^{\prime \prime}\right|}\right)^{2}\right)^{2}\left(1-\eta^{2}\right)}{4 \eta}}
\end{aligned}
$$

Numerical solution of 2-channel case

$$
\binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\frac{s-s_{0}}{\pi} P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{(\operatorname{Re} T)^{-1}(I m T)\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s^{\prime}\right)}{\operatorname{Re} A^{K}\left(s^{\prime}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{Re} A_{0}^{K}\left(s_{0}\right)}
$$

- We discretise following the method from [Moussallam et al. hep-ph/9909292] into

$$
\binom{\operatorname{Re} A^{\pi}\left(s_{i}\right)}{\operatorname{Re} A^{K}\left(s_{i}\right)}=\frac{s_{i}-s_{0}}{\pi} \sum_{j} \hat{w}_{j} \frac{(\operatorname{Re} T)^{-1}(\operatorname{Im} T)\left(s_{j}\right)}{\left(s_{j}-s_{i}\right)\left(s_{j}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s_{j}\right)}{\operatorname{Re} A^{K}\left(s_{j}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{Re} A_{0}^{K}\left(s_{0}\right)}
$$

- This creates an invertible matrix which gives a (discrete) solution
- Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]
- To pick the fundamental solutions, we fix the vector at an unphysical point $s<0$ and
- check they behave as $\frac{1}{s}$ for large s
- make sure the numerical determinant behaves as the (known) analytical determinant

Isospin decomposition

- $\pi \pi$ states can have isospin $=0,2$. $K K$ can have isospin $=0,1$.

$$
\left(\begin{array}{c}
A\left(\pi^{+} \pi^{-}\right) \\
A\left(\pi^{0} \pi^{0}\right) \\
A\left(K^{+} K^{-}\right) \\
A\left(K^{0} \bar{K}^{0}\right)
\end{array}\right)=\left(\begin{array}{cccc}
-\frac{1}{2 \sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
A_{\pi}^{2} \\
A_{\pi}^{0} \\
A^{1} \\
A_{K}^{K}
\end{array}\right)
$$

CPV in $\mathrm{I}=0$

$$
\begin{gathered}
\binom{A^{\pi}}{A^{K}}=\left(\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{array}\right)\binom{\operatorname{Re} \lambda_{d} T^{\pi}+\ldots}{\operatorname{Re} \lambda_{s} T^{K}+\ldots} \\
\binom{B^{\pi}}{B^{K}}=\left(\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{array}\right)\binom{\operatorname{Im} \lambda_{d} T^{\pi}+\sum_{i} \operatorname{Im} \lambda_{d_{i}} P_{i}^{\pi}}{\operatorname{Im} \lambda_{s} T^{K}+\sum_{i} \operatorname{Im} \lambda_{d_{i}} P_{i}^{K}}
\end{gathered}
$$

Can consider either $\operatorname{Im} \lambda_{d}=0$ or $\operatorname{Im} \lambda_{s}=0$, not both simultaneously $\Rightarrow \operatorname{In} a_{C P}^{\text {dir }}$ there always exists a term $\sim T^{\pi} T^{K}$, both for $\pi \pi$ and for $K K$

Large N_{C} limit \& effective operators

- $Q_{1}(i)=\left(\bar{d}_{i} c\right)_{V-A}\left(\bar{u} d_{i}\right)_{V-A}, Q_{2}(i)=(\bar{d} d)_{V-A}(\bar{u} c)_{V-A}$, $Q_{5,3}=(\bar{u} c)_{v-A} \sum_{q}(\bar{q} q)_{V \pm A}$,
$Q_{4}=\sum_{q}(\bar{u} q)_{v-A}(\bar{q} c)_{v-A}, Q_{6}=-2 \sum_{q}(\bar{u} q)_{S+P}(\bar{q} c)_{S-P}$
- $C_{1}=1.18, C_{2}=-0.32, C_{3}=0.011, C_{4}=-0.031, C_{5}=0.0068, C_{6}=-0.032$ $(\mu=2 \mathrm{GeV})$
- $\lambda_{d}=V_{c d}^{*} V_{u d} \approx 0.22$
- $\overline{m_{c}}(2 \mathrm{GeV})=1.045 \mathrm{GeV}$
- Compare $m_{D}=1865 \mathrm{MeV}$ to $\Lambda_{\chi P T} \approx m_{\rho}=775 \mathrm{MeV}$

