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Charm Physics in the limelight

Complementary to K and B Physics (CKM parameters) but different
(masses)

Experimental programme is growing (LHCb, Belle II, BESIII)

Rare decays Mixing CP violation in decays

CPV in hadronic D modes: only discovery of CPV in the charm sector

Plus new result of KK has puzzling implications
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A new Flavour Physics ’anomaly’ or an incomplete theory
prediction?

∆Aexp
CP ≡ ACP(D

0 → K+K−)− ACP(D
0 → π+π−) = [−1.54± 0.29] · 10−3

∆Adir,exp
CP = [−1.57± 0.29] · 10−3 [LHCb 2019]

ACP(D
0 → K+K−) = [6.8± 5.4(stat)± 1.6(syst)] · 10−4 [LHCb 2022]

Adir
CP(D

0 → π+π−) = [23.2± 6.1] · 10−4

Is the SM theoretical prediction in agreement?
Is it NP? [see e.g. 2210.16330]

Weak sector (CKM parameters)
probed by K&B physics

Strong sector (hadronic uncertainties) problematic
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Weak and strong, short and long distance
A (D0 → f ) = A(f ) + irCKMB(f )

A (D0 → f ) = A(f )−irCKMB(f )

adirCP ≈ 2rCKM
|B(f )|
|A(f )| · sin arg

A(f )

B(f )

From the short distance front:

Heff =
GF√
2

[
Σ2

i=1Ci (µ)
(
λdQ

d
i (µ) + λsQ

s
i (µ)

)
− λb(Σ

6
i=3Ci (µ)Qi (µ) + C8g (µ)Q8g (µ))

]
λq = V ∗

cqVuq , q = d , s, b.
|λd | ≈ |λs | = O(λ)

rCKM = Im
V∗
cbVub

V∗
cd

Vud
≈ 6.2 · 10−4

Current-current operators

Qq
1 = (q̄c)V−A(ūq)V−A

Qd
2 = (q̄jci )V−A(ūiqj )V−A

(q = d , s)

Penguin operators

Q3 = (ūc)V−AΣq (q̄q)V−A

Q4 = (ūj ci )V−AΣq (q̄i qj )V−A

Q5 = (ūc)V−AΣq (q̄q)V+A

Q6 = (ūj ci )V−AΣq (q̄i qj )V+A

C4,6 < 0.1C2, 0.03C1 (GIM mechanism at play)
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Σ2

i=1Ci (µ)
(
λdQ

d
i (µ) + λsQ

s
i (µ)

)
− λb(Σ

6
i=3Ci (µ)Qi (µ) + C8g (µ)Q8g (µ))

]
λq = V ∗

cqVuq , q = d , s, b.
|λd | ≈ |λs | = O(λ)

rCKM = Im
V∗
cbVub

V∗
cd

Vud
≈ 6.2 · 10−4

Problem:
:::::::
hadronic

::::::
matrix

::::::::
elements

⟨hh|Qi |D0⟩

Charm scale is special!

ΛχPT ≈ mρ < mD = 1865 MeV
ΛQCD

mc
= O(1)

See also: Khodjamirian, Petrov Phys. Lett. B, 774:235–242, 2017, Brod, Kagan, Zupan Phys. Rev. D, 86:014023, 2012, Schacht, Soni Phys. Lett. B,

825:136855, 2022
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A way to look at the problem: rescattering

Strong process, blind to the weak
phase

Isospin (u↔d) is a good symmetry
of strong interactions

In I=0, two channels:

Sstrong =

(
ππ → ππ ππ → KK
KK → ππ KK → KK

)
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Rescattering & what we learn about strong phases

S matrix is unitary, as well as strong sub-matrix

For I=0:
(
A(D → ππ)
A(D → KK)

)
=

 ηei2δ1 i

√
1 − η2ei(δ1+δ2)

i

√
1 − η2ei(δ1+δ2) ηei2δ2


︸ ︷︷ ︸

Sstrong

·
(
A∗(D → ππ)
A∗(D → KK)

)

The phases are related to the rescattering phases which are known from
data/nuclear experiments

Watson’s theorem (elastic rescattering limit):
argA(D → ππ) = argA(ππ → ππ)modπ

With inelasticities: more complicated, phase-shifts dependent on magnitudes
of the amplitudes too

Eleftheria Solomonidi-IFIC/Valencia CPV in D → ππ, KK Introduction 7 / 19



Magnitudes of matrix elements without rescattering

At the limit of Nc → ∞, we are only left with the matrix elements from
factorisation

(Same for D → KK )
Non-rescattering ”bare” amplitudes:

TB(D0 → π+π−) ∝ λdC1 ⟨π+π−|Q1|D0⟩fac−λb(C4 ⟨π+π−|Q4|D0⟩fac+C6 ⟨π+π−|Q6|D0⟩fac )

Form factors are at the non-rescattering limit!

Decay constant and form factor come from lattice and data (through χPT)

Internal gluon exchanges at each current are naturally included (but internal
quark loops are suppressed)
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Basic property of scattering amplitudes: analyticity

Fundamental, model-independent
property related to causality

Cauchy’s theorem:

A(s) = 1
2πi

∮
C
ds ′ A(s

′)
s′−s leads to

ReA(s) =
1

π

∫ ∞

sthr

ds ′
ImA(s ′)

s ′ − s

(Dispersion relation)

Unitarity of S-matrix & dispersion relation:

ReA(s)︸ ︷︷ ︸
Re at a point

= 1
π

∫ ∞

sthr

ds ′
tan δ(s ′)

s ′ − s
ReA(s ′)︸ ︷︷ ︸

integral of Re along the physical region
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Analyticity & what we learn about magnitudes

Integral equation, studied by Muskhelishvili-Omnes

One subtraction: needs one piece of physical information
Single channel case (& one subtraction at s0), physical solution:

|AI (s)| = AI (s0)︸ ︷︷ ︸
ampl. when Ω = 1

exp{
s − s0

π
PV

∫ ∞

4M2
π

dz
δI (z)

(z − s0)(z − s)
}︸ ︷︷ ︸

Omnes factor Ω

We need more than just large NC !

|AI (s = m2
D)| = (large NC result)× (Omnes factor)I

More channels: Equally more solutions. No analytical solution
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What we do
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Summary of our method

Factor out weak phases

Flavour basis to isospin

Isospin blocks:

I=0, unitarity with 2 channels: ππ and KK
I=1 with KK elastic rescattering
I=2 with ππ elastic rescattering

Isospin amplitudes treated with dispersion relations calculated numerically
(based on Moussallam et al. [hep-ph/9909292])

Use inelasticity and phase-shift parametrisations [Pelaez et al., 1907.13162],[Pelaez et al., 2010.11222]

up to energies ∼ mD - extrapolate for higher & consider uncertainties

For I=1 and 2, extract |Omnes factors| from Br’s of
A(D+ → π+π0) ∼ AI=2,A(D

+ → K+K 0) ∼ AI=1, phases left unconstrained

Decay-specific physical input: large NC limit (for subtraction constant)
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Choice of Omnes factors

For the isospin=0 channels we calculate numerically the Omnes matrix at s = m2
D
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▼ Polychronatos et al.

□ Protopopescu et al.

○ Cohen et al.

△ Etkin et al.

▽ Wetzel et al.

We examine the branching fraction predictions for the decays
π+π−, π0π0, K+K−,K 0K 0 based on each Omnes matrix separately

Only a few of them give simultaneously correct Br values for all channels:
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Results
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Rescattering quantified

With the branching fractions correctly reproduced
(old D → ππ, KK puzzle seems to be solved!)
the Omnes matrix looks like:

ΩI=0 =

(
0.58e1.8i 0.64e−1.7i

0.58e−1.4i 0.61e2.3i

)
The physical solution is(

A(D → ππ)
A(D → KK )

)
= ΩI=0 ·

(
Afactorisation(D → ππ)
Afactorisation(D → KK )

)
It turns out:

Significant rescattering between the two final states!

penguin insertions ≈ tree insertions
(of curr.-curr. operators, for I=0 reduced matrix elements)
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CP asymmetries

charged meson channels
neutral meson channels

∆Adir ,exp
CP = (−1.57± 0.29) · 10−3

With δ(I = 2, ππ), δ(I = 1,KK )
around the chosen values, we predict:

∆Adir ,theo
CP ∼ 5 · (10−4)!!

and adirCP(D
0 → π+π−) ≈ 3 · 10−4,

adirCP(D
0 → K+K−) ≈ −2 · 10−4

adirCP ≈ 2 rCKM︸ ︷︷ ︸
∼ 6 · 10−4

|B(f )|
|A(f )|︸ ︷︷ ︸
∼ 1/3

· sin arg A(f )

B(f )︸ ︷︷ ︸
∼1

NB: Short-distance penguins also not negligible for the CP asymmetries:
C6 small but annihilation insertion very large so that C6 ⟨Q6⟩fac ∼ C1 ⟨Q1⟩fac

Eleftheria Solomonidi-IFIC/Valencia CPV in D → ππ, KK Results 16 / 19



With fewer uncertain strong parameters (preliminary)

ππ,KK inelasticity has
large uncertainties

Use only one low-energy
strong phase for isospin 0:
ππ + KK phase

Assumption: 2-channel unitarity → CPT/unitarity theorem also applying

We manage to constrain:

0 < aCP(ππ)(0− 0) ≲ 5× 10−4

−3× 10−4 ≲ aCP(KK )(0− 0) < 0

The CP asymmetry from I = 2/0 interference is not constrained, but would
require very large values of isospin-0 Omnes matrix elements
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Summary

SM, data-driven approach that calculates the hadronic matrix elements
deploying

1 S-matrix unitarity and scattering amplitude analyticity; YES isospin, NO
SU(3) assumptions

2 as much data as possible (rescattering, form factors and decay constants, Br’s
of D+ decays)

Strong rescattering data involves uncertainties → We keep the input that
yields branching fractions in reasonable agreement with experiment

We still estimate the CP asymmetry for the π+π− too small compared
to the experimental value!

CPV in D0 → π0π0 should be of similar magnitude (could experiments look
there?)

Future directions: diferent isospin-2 scenarios, more channels in isospin-0?

But these are naively not expected to change the picture...
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Thank you very much!



BACKUP
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Isospin-2 and -1 fixing

A (D+ → π+π0) =
3

2
√
2
Aπ
I2

A (D+ → K+K 0) = AK
I1

We fix |Aπ
I2|, |AK

I1| from the Br’s and use them in e.g.

A (D0 → π+π−) = − 1

2
√
3
Aπ
I2 +

1√
6
Aπ
I0

If I=2 elastic then Aπ
I2 = ΩI=2Afac,I=2

If inelastic Aπ
I2 = ΩI=2Afac,I=2 + (mixing) but we use directly

Aπ
I2 = |Aπ

I2|exp{iδππI=2}, phase left free
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Naive estimate of final state interaction effects

(
AI=0
ππ

AI=0
KK

)
= S

1/2
S ·

(
AI=0
ππ,bare

AI=0
KK ,bare

)
bare amplitudes: from factorisation (no strong phases)
Reproduces correctly Watson’s theorem
What unitarity gives: (

AI=0
ππ

AI=0
KK

)
= SS ·

(
(AI=0

ππ )∗

(AI=0
KK )∗

)
No direct solution for the amplitudes, just relates them to the phases:

argAI=0
ππ = δ1 + arccos

√
(1+η)2−

( |AI=0
KK

|

|AI=0
ππ |

)2
(1−η2)

4η

argAI=0
KK = δ2 + arccos

√
(1+η)2−

(
|AI=0

ππ |
|AI=0

KK
|

)2
(1−η2)

4η
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Numerical solution of 2-channel case

(
ReAπ(s)
ReAK (s)

)
=

s − s0

π
PV

∫ ∞

sthr

ds′
(ReT )−1(ImT )(s′)

(s′ − s)(s′ − s0)

(
ReAπ(s′)
ReAK (s′)

)
+

(
ReAπ

0 (s0)
ReAK

0 (s0)

)
We discretise following the method from [Moussallam et al. hep-ph/9909292] into

(
ReAπ(si )

ReAK (si )

)
=

si − s0

π

∑
j

ŵj
(ReT )−1(ImT )(sj )

(sj − si )(sj − s0)

(
ReAπ(sj )

ReAK (sj )

)
+

(
ReAπ

0 (s0)

ReAK
0 (s0)

)

This creates an invertible matrix which gives a (discrete) solution

Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]

To pick the fundamental solutions, we fix the vector at an unphysical point s < 0 and

check they behave as 1
s for large s

make sure the numerical determinant behaves as the (known) analytical determinant
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Isospin decomposition

ππ states can have isospin=0,2. KK can have isospin=0,1.
A(π+π−)
A(π0π0)
A(K+K−)

A(K0K
0
)

 =


− 1

2
√
3

− 1√
6

0 0
1√
3

− 1√
6

0 0

0 0 1
2

− 1
2

0 0 − 1
2

− 1
2



A2
π

A0
π

A1
K

A0
K


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CPV in I=0

(
Aπ

AK

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
ReλdT

π + ...
ReλsT

K + ...

)
(
Bπ

BK

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
ImλdT

π +
∑

i ImλdiP
π
i

ImλsT
K +

∑
i ImλdiP

K
i

)
Can consider either Imλd = 0 or Imλs = 0, not both simultaneously
⇒ In adirCP there always exists a term ∼ TπTK , both for ππ and for KK
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Large NC limit & effective operators

Q1(i) = (dic)V−A(udi )V−A,Q2(i) = (dd)V−A(uc)V−A,
Q5,3 = (uc)V−A

∑
q(qq)V±A,

Q4 =
∑

q(uq)V−A(qc)V−A,Q6 = −2
∑

q(uq)S+P(qc)S−P

C1 = 1.18,C2 = −0.32,C3 = 0.011,C4 = −0.031,C5 = 0.0068,C6 = −0.032
(µ = 2 GeV)

λd = V ∗
cdVud ≈ 0.22

mc(2GeV ) = 1.045GeV

Compare mD = 1865 MeV to ΛχPT ≈ mρ = 775 MeV
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