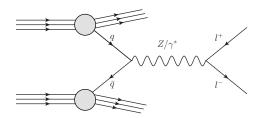


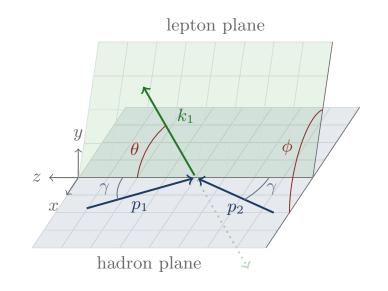
Precision phenomenology in the Drell-Yan process


Thomas Gehrmann (Universität Zürich) SM@LHC 2023, Fermilab, 10-13.7.2023

based on: 2107.09085, 2203.01565, 2205.11426, 2301.11827

Drell-Yan process

- Drell-Yan lepton pair (neutral-current or charged-current) production
 - Benchmark observable: multi-differential measurements
 - Precision measurements of EW parameters and parton distributions
- Standard Model theory well understood
 - NLO EW [C.Carloni Calame, G.Motagna, A.Nicrosini, A.Vicini; S.Dittmaier, M.Huber]
 - NNLO QCD and NNLO QCD+EW (+ total cross section to N3LO QCD)

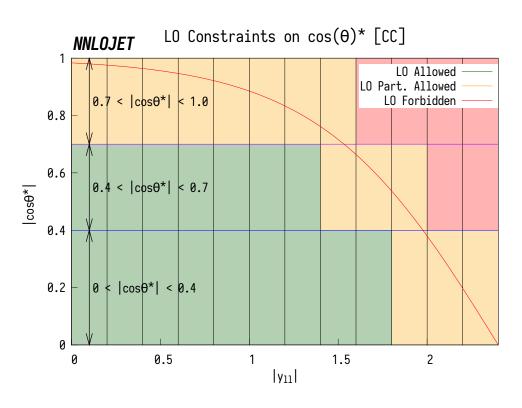

 [K.Melnikov, F.Petriello; S.Catani, L.Cieri, G.Ferrera, D.de Florian, M.Grazzini; C.Duhr, F.Dulat, B.Mistlberger; R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, A.Vicini; F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile]
 - transverse momentum resummation to N3LL QCD [W.Bizon, P.F.Monni, E.Re, L.Rottoli, P.Torrielli]
- Precision Tools: FEWZ, DYNNLO, DYturbo, POWHEG, ...

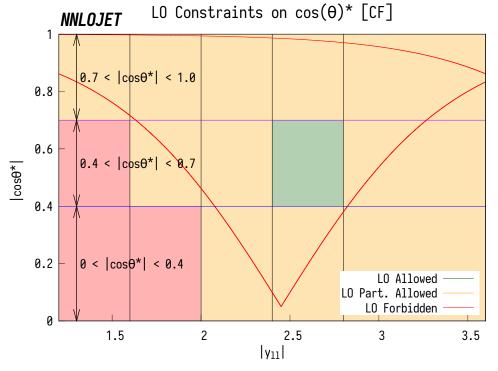
• Lepton pair production: EW precision observable

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d} m_{ll} \mathrm{d} y_{ll} \mathrm{d} \cos \theta^*} = \frac{\pi \alpha^2}{3 m_{ll} s} \sum_{q} P_q(\cos \theta^*) \left[f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2) + (q \leftrightarrow \bar{q}) \right]$$

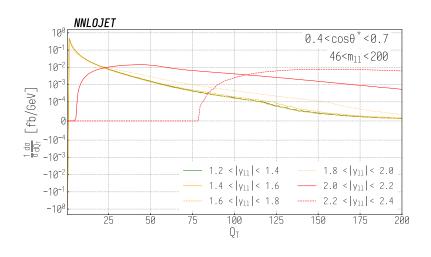
ATLAS 8 TeV measurement [1710.05167]

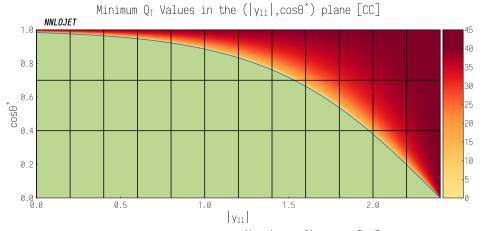
Observable	Central-Central	Central-Forward
$m_{ll} \; [{ m GeV}]$	[46,66,80,91,102,116,150,200]	[66,80,91,102,116,150]
$ y_{ll} $	[0,0.2,0.4,0.6,0.8,1,1.2,	[1.2, 1.6, 2, 2.4, 2.8, 3.6]
	1.4,1.6,1.8,2,2.2,2.4]	
$\cos heta^*$	[-1, -0.7, -0.4, 0, 0.4, 0.7, 1]	[-1,-0.7,-0.4,0,0.4,0.7,1]
Total Bin Count:	504	150

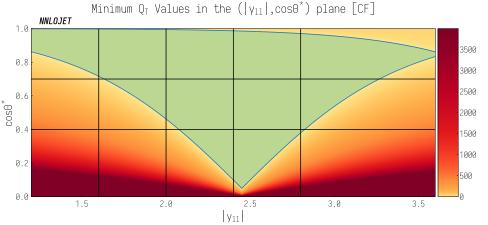

Measured with fiducial event selection cuts (on single leptons)

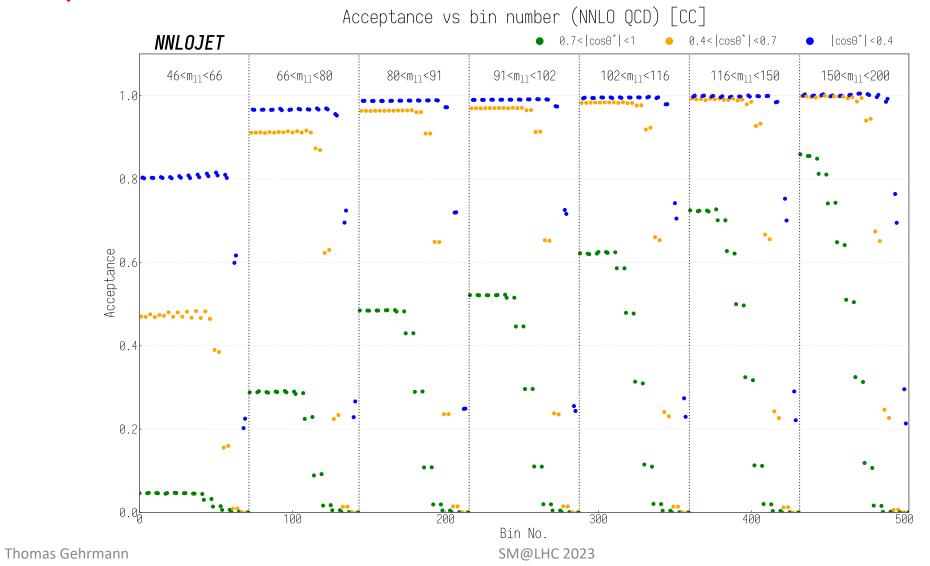

Central-Central	Central-Forward	
$p_T^l > 20 \; { m GeV}$	$p_{T,F}^l > 20 \; \mathrm{GeV} \qquad p_{T,C}^l > 25 \; \mathrm{GeV}$ $2.5 < y_F^l < 4.9 \qquad y_C^l < 2.4$	
$46 \text{ GeV} < m_{ll} < 200 \text{ GeV}$	$66 \text{ GeV} < m_{ll} < 150 \text{ GeV}$	

• Fiducial cuts influence acceptances in triple-differential bins

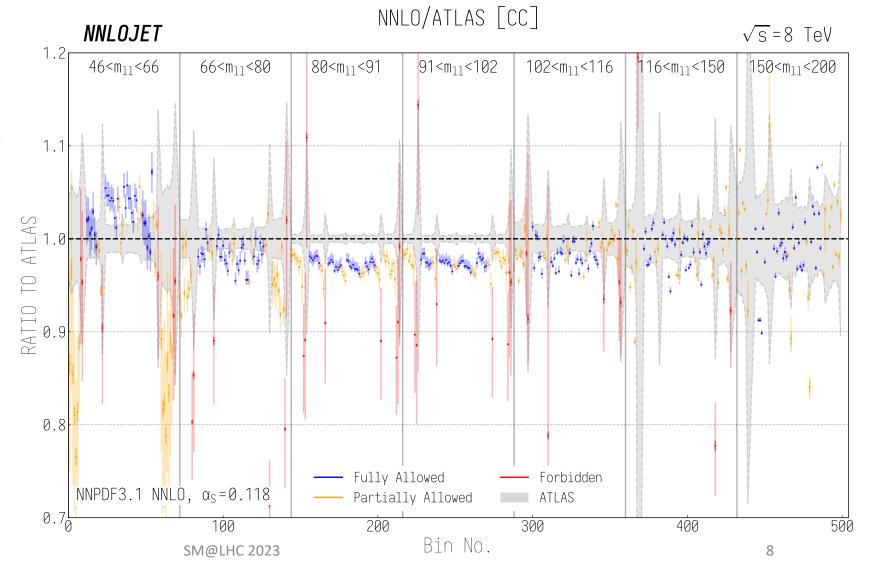

Leading order: fiducial cuts intersect bin definitions


[A.Gehrmann-De Ridder, E.W.N.Glover, A.Huss, C.Preuss, D.Walker, TG: 2301.11827]



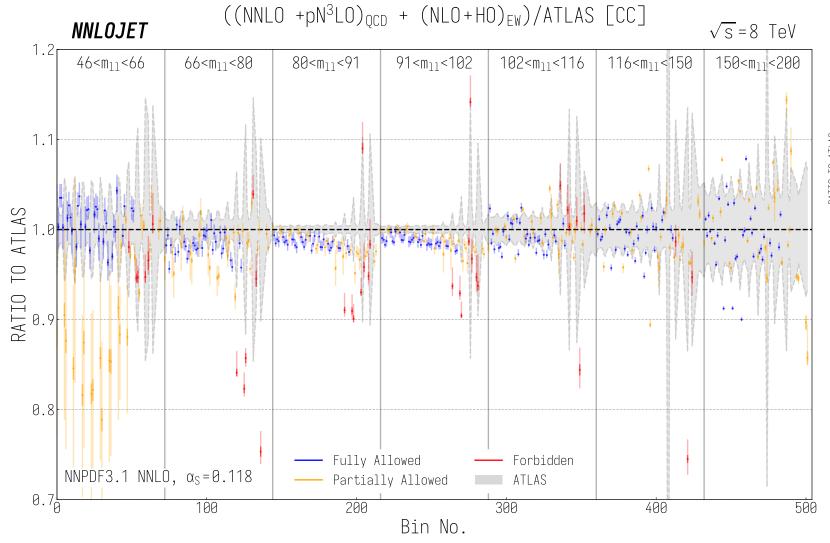


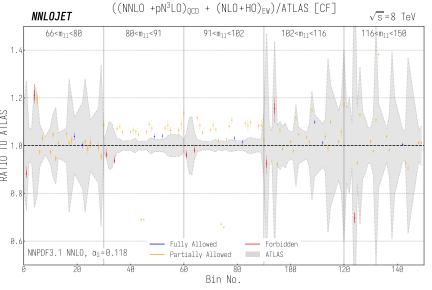
- Leading-order forbidden bins
 - require finite Q_T of lepton pair
 - shown here: symmetric lepton pair
- → prediction starts only at NLO
 - lower accuracy
 - potential perturbative instabilities



In forbidden bins

- large theory uncertainty
- poor agreement with data



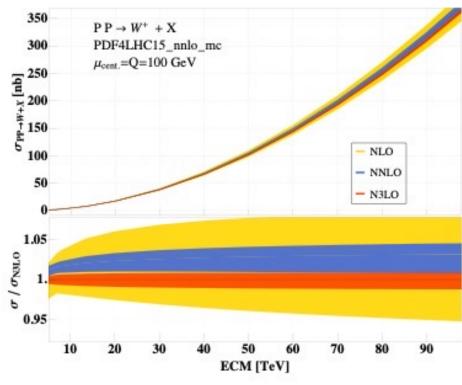

Forbidden bins at leading order

- O(α_s³) corrections (Drell-Yan N³LO) obtained from V+jet at NNLO [MCFM: T.Neumann, J.Campbell; NNLOJET: A.Gehrmann-De Ridder, N.Glover, A.Huss, T.Morgan, D.Walker, TG]
 - implemented in NNLOJET using antenna subtraction
 - replace jet requirement by (small) Q_T cut
 - numerical convergence at small Q_T challenging

State-of-the-art theory prediction

- QCD NNLO (α_s^2) plus N3LO (α_s^3) in LO-forbidden bins
- combined with (NLO+HO) EW corrections [C.Carloni Calame, G.Motagna, A.Nicrosini, A.Vicini]

Future applications


- measurement of sin²Θw
- determination of parton distributions

Thomas Gehrmann SM@LHC 2023 10

Towards full N3LO in Drell-Yan observables

Inclusive coefficient functions (total cross section) at N3LO

- computed analytically
 - three-loop form factors
 - inclusive phase space up to triple emission
 - 100s of loop and phase-space master integrals
- Results
 - virtual photon exchange [C.Duhr, F.Dulat, B.Mistlberger]
 - charged-current Drell-Yan: W[±] production [C.Duhr, F.Dulat, B.Mistlberger]
 - neutral-current Drell-Yan: γ*/Z⁰ production [C.Duhr, B.Mistlberger]
 - associated VH production [n3loxs: J.Baglio, C.Duhr, B.Mistlberger, R.Szafron]

Towards full N3LO in Drell-Yan observables

Differential distributions at N3LO

- parton-level implementation of all V+jet processes at NNLO
- combined with three-loop virtual corrections (form factor)
- subtraction scheme for handling of infrared-singular contributions

Subtraction methods applicable at N3LO

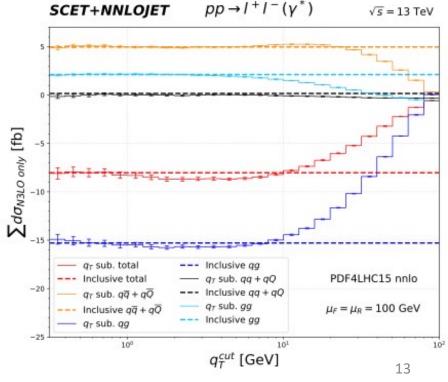
• Projection to Born [M.Cacciari, F.Dreyer, A.Karlberg, G.Salam, G.Zanderighi]

$$\frac{d\sigma_X^{N3LO}}{dO} = \frac{d\sigma_{X+j}^{NNLO}}{dO} - \frac{d\sigma_{X+j}^{NNLO}}{dO_B} + \frac{d\sigma_X^{N3LO,incl}}{dO_B}$$

• q_T subtraction [S.Catani, M.Grazzini]

$$\frac{d\sigma_X^{N3LO}}{dO} = \mathcal{H}_{N3LO} \otimes \frac{d\sigma_X^{LO}}{dO} + \left[\int_{q_{T,X}} \frac{d\sigma_{X+j}^{NNLO}}{dO} - \frac{d\sigma_{X,CT}^{NNLO}}{dO} (q_T) \right]$$

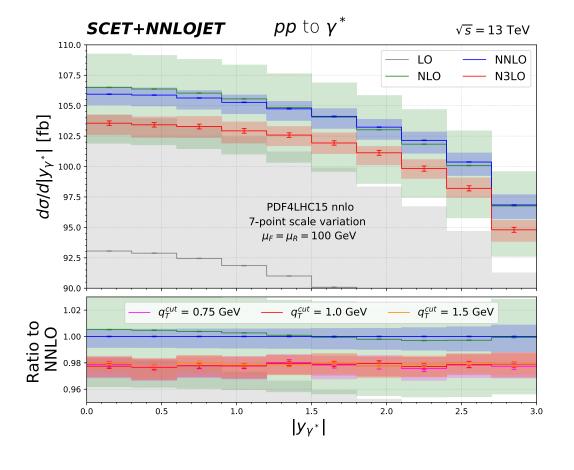
Towards full N3LO in Drell-Yan observables


NNLOJET implementation of Drell-Yan processes at N3LO

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG: 2107.09085]

- based on V+jet at NNLO
- using antenna subtraction for infrared subtraction at NNLO

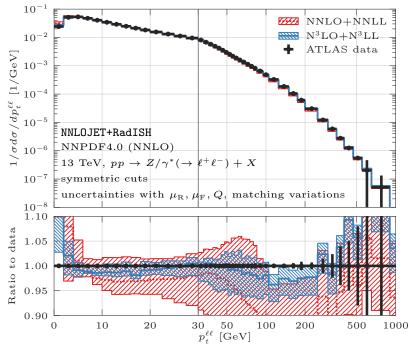
Genuine N3LO singularities: q_T subtraction

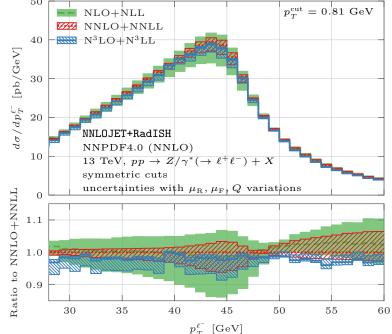

- obtain q_T counterterm from expansion of N3LL q_T resummation to $O(\alpha_s^3)$
- ingredients: three-loop soft and beam functions [Y.Li, H.X.Zhu; M.Ebert, B.Mistlberger, G.Vita; M.X.Luo, H.X.Zhu, T.Z.Yang, Y.J.Zhu]
- check: independence on q_{T,cut} slicing parameter
- check: reproduce inclusive coefficient functions (no ingredients or methodology in common!)

N3LO in Drell-Yan observables

Rapidity distribution of lepton pair

- N3LO corrections uniform in y
- same size as inclusive N3LO K-factor
- N3LO outside NNLO scale uncertainty
- scale uncertainty remains at 1% level
- still: inclusive in lepton kinematics

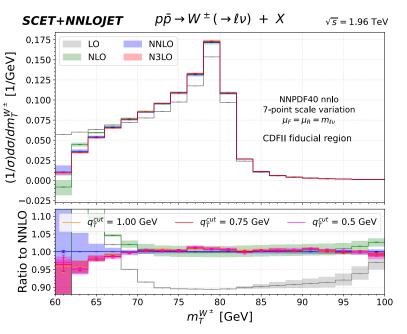


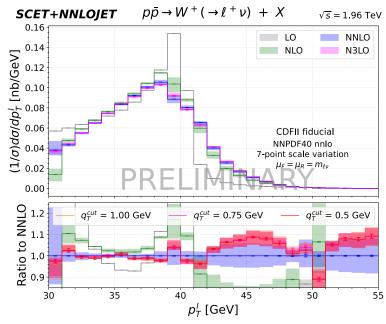

N3LO in Drell-Yan observables

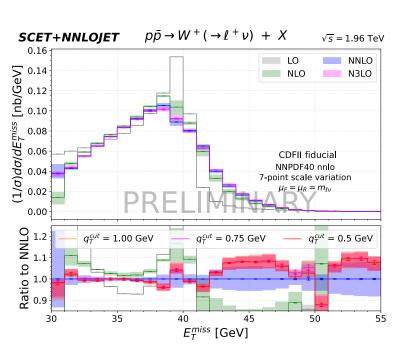
Matching of N3LO with N3LL resummation

[X.Chen, E.W.N.Glover, A.Huss, P.F.Monni, E.Re, L.Rottoli, P.Torrielli, TG: 2203.01565]

- resummation in momentum space (RadISH)
- fiducial cross sections: lepton pair and single lepton distributions in NC Drell-Yan process
- improved perturbative convergence: uncertainty on NNLO+NNLL larger than NNLO-only


Thomas Gehrmann SM@LHC 2023 15


N3LO in Drell-Yan observables


Normalized fiducial distributions in W production

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG: 2205.11426 and work in progress]

- relevant for W mass extraction (CDF II, future LHC measurements)
- N3LO corrections for CDFII kinematics flat in m_T , but non-trivial shape in p_T^I , E_T^{miss}

G.Fontanal

Summary

- Drell-Yan process enables broad range of precision studies
- Complex interplay between observable definitions and fiducial cuts
- Demands ultimate per-cent level precision on fiducial distributions
 - NNLO and N3LO fixed-order, matched on N3LL resummation
 - combined with higher-order electroweak corrections
- First results, enabled by important computational advances
 - Triple-differential Drell-Yan cross sections at NNLO+ QCD + NLO EW
 - Single-differential N3LO corrections uniform in inclusive observables
 - non-trivial shape deformations for some fiducial distributions
- Preparing for LHC phenomenology at ultimate precision