

Experimental status of m_W measurements at LHC and Tevatron

Hang Yin

Central China Normal University

SM@LHC, Fermilab 07/13/2023

Outlines

- Introduction
- \bigcirc *W* mass measurement (m_W) from LHC and Tevatron

O Summary

Introduction

 $\odot m_W$ is related to other fundamental parameters in SM EW sector

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta)$$

 Radiative corrections (Δ) dominated by top quark and Higgs loop, also can be affected by new physics contributions

mW measurements at LHC and Tevatron, Hang Yin

Standard Model global fit

 Excellent agreement between individual measurement and global fit

○ Tension between A_{FB}^{b} and $A_{l}(SLD)$: ~3.2 σ

 Precision weak mixing angle measurement from LEP and SLD

Other EW observables are within 2σ band

CDF result

More than 4σ deviation

LHC and Tevatron

LHC:

- ~27 km, *pp* collider
- 7, 8, 13, 13.6 TeV
- CERN: From 2009 to present

Tevatron:

- ~6.3 km, $p\overline{p}$ collider
- 1.8, 1.96 TeV
- Fermilab: From 1987 to 2011

CDF and **DZero** experiments

ATLAS/CMS/LHCb expeirments

SPD/PS HCAL SPD/PS M4 M5 Costor Vertex Costor ECAL HCAL M4 M5 250mrad

7/13/23

JINST 3 (2008) S08003

 \bigcirc Lepton (electron/muon) + missing transverse energy (p_T^{miss})

Generators

- ResBos, PowHEG, DYTurbo ...
- **O Different baseline PDFs**
- **O** Different generators: a long time scale

Experiments	Generators	Order	Ai	PDFs
D0	ResBos (C)	NLO+NNLL	/	CTEQ66 (NLO)
CDF	ResBos (CP)	NLO+NNLL	/	CTEQ6M(NLO)
ATLAS	PowHEG+Pythia8	NLO+PS	NNLO	CT10(NNLO)
LHCb	PowHEG+Pythia8	NLO+PS	NNLO (DYTrubo)	NNPDF3.1, CT18, MSHT 20(NLO)

CDF measurement (1)

○ 1.96 TeV data set (2002-2007): 2.2 fb⁻¹

Both electron and muon channels • $W(1.1 \times 10^6), Z(7.6 \times 10^4)$

O Tracker calibration:

- Tracker alignment using cosmic rays
- Track momentum scale and non-linearity constrained using $I/\psi \rightarrow \mu^+\mu^-$ and $\Upsilon \rightarrow \mu^+\mu^-$ evts • Confirmed using $Z \rightarrow \mu^+ \mu^-$ mass fit

EM calorimeter calibration:

- Transfer track momentum scale to EM calorimeter energy scale using fits to the E/p spectrum
- Confirmed using $Z \rightarrow e^+e^-$ mass fit

m_{ee} (GeV)

80

CDF measurement (2)

PRL 108 (2012) 151803

Distribution	$m_W^{}$ (MeV)	Distribution	m_W (MeV)	
$m_T(\mu, \nu)$	80379 ± 16 (stat)	$m_T(e, v)$	80408 ± 19 (stat)	
$p_{T}\left(\mu ight)$	80348 ± 18 (stat)	$p_T(e)$	80393 ± 21 (stat)	
$p_T^{miss}(\mu, \nu)$	80406 ± 22 (stat)	$p_T^{miss}(e, v)$	80431 ± 25 (stat)	
CDF Combination (2.2 fb ⁻¹) 80387 \pm 19 (syst + stat) MeV				

CDF measurement (3)

Full data-sets (2002-2011): 8.8 fb⁻¹ W(4.2×10⁶), Z(3.0×10⁵)

Improvements:

$80433.5 \pm 6.4(stat) + 6.9(syst) = 80433.5 \pm 9.4$ MeV

Method or technique	impact	section of paper
Detailed treatment of parton distribution functions	+3.5 MeV	IV A
Resolved beam-constraining bias in CDF reconstruction	$+10 { m MeV}$	VIC
Improved COT alignment and drift model [65]	uniformity	VI
Improved modeling of calorimeter tower resolution	uniformity	III
Temporal uniformity calibration of CEM towers	uniformity	VII A
Lepton removal procedure corrected for luminosity	uniformity	VIII A
Higher-order calculation of QED radiation in J/ψ and Υ decays	accuracy	VI A & B
Modeling kurtosis of hadronic recoil energy resolution	accuracy	VIII B 2
Improved modeling of hadronic recoil angular resolution	accuracy	VIIIB3
Modeling dijet contribution to recoil resolution	accuracy	VIIIB4
Explicit luminosity matching of pileup	accuracy	VIII B 5
Modeling kurtosis of pileup resolution	accuracy	VIII B 5
Theory model of p_T^W/p_T^Z spectrum ratio	accuracy	IV B
Constraint from p_T^W data spectrum	robustness	VIIIB6
Cross-check of p_T^Z tuning	robustness	IVB

mW measurements at LHC and Tevatron, Hang Yin

Dzero measurement (1)

○ 1.96 TeV data-set (2006-2009): 4.3 fb⁻¹

- Electron channel only • $W(1.7 \times 10^6), Z(5.5 \times 10^4)$
- Lepton energy calibration using $Z \rightarrow e^+e^-$ events
 - Calorimeter calibration
 - Simulation of effect of inst. Luminosity
 - Correction for dead material
 - Modeling of underlying energy flow
 - Electron energy scale calibration

Dzero measurement (2)

PRL 108 (2012) 151804

Fitted m_W : 80367 ± 13 (stat) ± 22(syst) MeV

1.1 fb⁻¹ with MET
4.3 fb⁻¹ without MET

Combined (5.3 fb⁻¹): 80357 \pm 23 (stat + syst) MeV

Tevatron Combination (2013)

ATLAS measurement

○ 7 TeV data-set (2011), 4.6 fb⁻¹

both electron and muon channels
 W(1.4×10⁷), Z(1.8×10⁶)

- Use $Z \rightarrow \ell^+ \ell^-$ events to calibrate lepton momentum and recoil response
- \bigcirc Validation with $Z \rightarrow \ell^+ \ell^-$:

• Treat one of the charged lepton as neutrino • p_T^{miss} and m_T to check recoil calibration

ATLAS measurement: updated

ATLAS-CONF-2023-004

Improvements:

- Rigorous checks of modeling
 - $p_T(W)$ measurement:
- ATLAS-CONF-2023-028
- Modeling checks result in updates of PDFs and the evaluation of EW correction

• CT18, replace CT10

- Recover 1.5% of data in electron channel
- Profile likelihood fit, instead of χ^2 minimization

LHCb measurement (1)

○ 13 TeV data-set (2016), 1.6 fb⁻¹

- Muon channel only
- $W(1.0 \times 10^6)$, $Z(2.2 \times 10^5)$
- Muon q/p_T distribution is used to measure m_W
 - → cannot reconstruct missing E_t (not a 4π detector)

O Complementary to ATLAS/CMS results

- PDFs decorrelation
- An important measurement to reduce uncertainty from PDFs $(\mathbf{C}^+ \mathbf{C}^- \mathbf{L}^+ \mathbf{L}^-)$

$$ho = egin{pmatrix} \mathbf{G}^+ & \mathbf{G}^- & \mathbf{L}^+ & \mathbf{L}^- \ \mathbf{G}^+ & 1 & & & \ \mathbf{G}^- & -0.22 & 1 & & \ \mathbf{L}^+ & -0.63 & 0.11 & 1 & \ \mathbf{L}^- & -0.02 & -0.30 & 0.21 & 1 \end{pmatrix}$$

mW measurements at LHC and Tevatron, Hang Yin

LHCb measurement (2)

JHEP 01 (2022) 036

• The determined m_W with the NNPDF31_nlo_as_0118 PDFs set

• $\chi^2/dof = 105/102$

• Combined results obtained with NNPDF3.1, CT18, and MSHT20 PDFs sets:

• $m_W = 80354 \pm 23(stat.) \pm 10(exp.) \pm 17(theory) \pm 9(PDF)$

CMS measurement

O No publication so far

○ "W-like" measurement of the Z mass

• removing one lepton and treating as missing energy

- 7 TeV data-set (2011), 4.7 fb⁻¹, $< \mu > \approx 10$
- central muon only ($|\eta| < 0.9$, instead of 2.4)

○ A proof-of-principle:

\circ muon p_T and the recoil can be calibrated, even in the presence of large pileup

mW measurements at LHC and Tevatron, Hang Yin

Prospects

O ATLAS:

- Reanalysis of previous publication
- Improvement from previous measurement: 19 MeV → 16 MeV
- Low pileup data available

O CMS:

- \bigcirc actively working on an m_W measurement
- 200 pb^{-1} low pileup data in 2017
- Collect more in Run-3: for m_W measurement

O LHCb:

- Including 2017-2018 data-set
- Target: 14 MeV(stat), 20 MeV (total)
- Run-3: a similar detector and analysis environment

Created by the Bing 'Image Creator'

Summary

O Tevatron legacy measurements from CDF and DZero experiments

- A significant deviation between CDF result and SM expectation
- CDF: full data-set, $\sim 4\sigma$ deviation
- OZero: no plan to update with full data-set

\bigcirc LHC experiments are working on the m_W measurement

- Many challenges at LHC: for example high pileup
- ATLAS/LHCb published their first result on m_W
- CMS is working on this analysis

O Expect to have more updates from the LHC experiments

- Combination of experimental measured results is ongoing
- Collaborations between experiments and theorists

Backup

Created by the Bing 'Image Creator'

W mass at the LHC

 \bigcirc A pp collider has more challenges, compared to $p\bar{p}$ and e^+e^- colliders

In pp collisions W bosons are mostly produced in the same helicity state

In pp collisions they are equally distributed between positive and negative helicity states

Large PDF-induced W-polarization uncertainty affecting the p_T lepton distribution

ATLAS measurement (2)

mW measurements at LHC and Tevatron, Hang Yin

LHCb W mass measurement

- ATLAS and CMS experiments have the high pileup environment
- $W \rightarrow \mu v$ sample with high purity can be selected using the LHCb data, without requirement on the missing
- Anti-correlation of PDFs uncertainty: 10.5 MeV to 7.7 MeV

$$\delta_{\rm PDF} = \begin{pmatrix} \mathbf{G}^+ \ 24.8 \\ \mathbf{G}^- \ 13.2 \\ \mathbf{L}^+ \ 27.0 \\ \mathbf{L}^- \ 49.3 \end{pmatrix}, \quad \rho = \begin{pmatrix} \mathbf{G}^+ \ \mathbf{G}^- \ \mathbf{L}^+ \ \mathbf{L}^- \\ \mathbf{G}^+ \ 1 \\ \mathbf{G}^- \ -0.22 \ 1 \\ \mathbf{L}^+ \ -0.63 \ 0.11 \ 1 \\ \mathbf{L}^- \ -0.02 \ -0.30 \ 0.21 \ 1 \end{pmatrix} \qquad \alpha = \begin{pmatrix} \mathbf{G}^+ \ 0.30 \\ \mathbf{G}^- \ 0.45 \\ \mathbf{L}^+ \ 0.21 \\ \mathbf{L}^- \ 0.04 \end{pmatrix}$$

G: general purpose detector Correlation matrix Weights L: LHCb

Systematic uncertainties

Source	Size [MeV]
Parton distribution functions	9 PDFs: average of NNPDF31, CT18 and MSHT20
Theory (excl. PDFs) total	17
Transverse momentum model	11 p_T model: envelope from five different models
Angular coefficients	10 A_i : scale variation
QED FSR model	7 QED: envelope of the QED FSR from PYTHIA8,
Additional electroweak corrections	5 Photos, and Herweig7
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6 Efficiencies: statistical uncertainties, details of
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

Run-2 full data-set

O The proof-of-principle measurement with the 2016 data

- \odot A full Run-2 measurement targeting $\Delta m_W pprox 20 \text{ MeV}$
 - $\Delta m_W(stat) \approx 14 \text{ MeV}$
 - QCD predictions with higher perturbative accuracy are available e.g. from DYTurbo

Combinations

\odot The Tevatron and LHC m_W combination is ongoing

- Correlations dominated by PDF uncertainties
- Some issues in the description of W spin correlations in legacy ResBos codes
 - ➔ at the level of 10 MeV

CERN-LPCC-2022-06 FERMILAB-TM-2779-V 7th July 2022

Towards a combination of LHC and TeVatron W-boson mass measurements

The LHC–TeVatron W-boson mass combination working group¹

In this note methodological and modelling considerations towards a combination of the ATLAS, CDF and D0 measurements of the W-boson mass are discussed. As they were performed at different moments in time, each measurement employed different assumptions for the modelling of W-boson production and decay, as well as different fits of the parton distribution functions of the proton (PDFs). Methods are presented to accurately evaluate the effect of PDFs and other modelling variations on existing measurements, allowing to extrapolate them to any PDF set and to evaluate the corresponding uncertainties. Based on this approach, the measurements can be corrected to a common modelling reference and to the same PDFs, and subsequently combined accounting for PDF correlations in a quantitative way.

It is a long journey ...

- 1967: theory, weak force mediated by the and bosons
- 1983: boson was discovered UA1, UA2 @SppS (GeV): GeV
- 1990: First mass with precision (GeV) (UA2, GeV)
- 1992-1995: Tevatron Run-1 measurement (CDF & D0): Combined precision 59 MeV
- 1996-2000: LEP experiments (): MeV
- 2001-2012: Tevatron Run II, combined precisi
- 2012-2022: ATLAS and LHCb 19 MeV/32 Me
- 2022: CDF 9 MeV

