MACHINE LEARNING HADRONIZATION

JURE ZUPAN U. OF CINCINNATI

based on 2203.04983, 2307.nnnnn,; in collaboration with Phil Ilten, Tony Menzo, Steve Mrenna, Manuel Szewc, Michael K. Wilkinson, Ahmed Youssef

SM@LHC, Fermilab, July 10 2023

MONTE CARLO HEP EVENT

- block structure of HEP Monte Carlo
 - hard process
 - shower
 - hadronization

under good perturbative control and systematically improvable

modeling of nonperturbative physics

• (detector simulation)

MONTE CARLO HEP EVENT

- block structure of HEP Monte Carlo
 - hard process
 - shower
 - hadronization
- under good perturbative control and systematically improvable
- modeling of nor use Machine Learning (detector simulation)

HADRONIZATION

- two main models for hadronization
 - Lund string model (Pythia)
 - cluster hadronization model (Herwig)
- both have as a starting point "colour preconfinement" stage of QCD shower
 Amati, Veneziano, PLB83, 1979

3

- stop shower at some scale Q_0
- in large $N_c \rightarrow \infty$ limit planar graphs
- groups final *q*, *q*, *g* in QCD singlet clusters

J. Zupan ML hadronization

LUND STRING MODEL

- strings connect $q\bar{q}$ systems
- gluons kinks in strings
 - split gluons to a collinear $q\bar{q}$ pair \Rightarrow string pieces
- string pieces break into hadrons (model dep.)
 - controlled by Lund string fragmentation function
- Pythia Lund string model: many parameters, O(200)
 - many of these related to color reconnection

WHEN SHOULD WE CARE ABOUT HADRONIZATION?

- if observables/measurements inclusive enough no need for modeling hadronization
- not the situation in the real world
 - experimental cuts, detectors not perfect, resonances decay in different ways
 - modeling well hadronization step essential for precision studies
- some measurements more sensitive than others
 - e.g., number of charged particles, correlations between exclusive states, etc.

 e.g., number of charged particles, correlations between exclusive states, etc.

ML FOR HADRONIZATION

MLhad: Ilten, Menzo, Youssef, JZ, 2203.04983, https://gitlab.com/uchep/mlhad see also HadML: (Chan, Ghosh,) Ju, (Kania), Nachman, (Sangli,) Siodmok, 2203.12660, 2305.17169

- MLhad: the long term goal
 - use ML to "parametrize our ignorance" about hadronization, use data
- more immediate
 - reproduce simplified version of Pythia Lund string model

ML FOR HADRONIZATION

- a series of progressive steps to be done before practically useful in Pythia/MC simulations
 - ML architecture that mimicks a simplified Lund string hadronization model
 - train ML on truth level Pythia output (not obs. in exp)
 - develop a framework to propagate errors
 - improved ML architecture with full hadron flavor selector
 - train on mock data (i.e. just observable information)
 - train on real data (i.e. just already measured information)
 - replace / supplement Pythia string model

J. Zupan ML hadronization

we are

7

SIMPLIFIED STRING HADRONIZATION MODEL

- assume that color reconnection done correctly by Pythia
- want to reproduce first hadron emission from a string piece with q, \bar{q} ends
 - the whole hadronization chain is then reproduced by iterating
 - the string is labeled by q, \bar{q} flavor and its energy in cms, 2*E*
- simplified flavor selector: only emission of pions
- have an IR cut-off of 5 GeV, at which hadronization chain terminates

CSWAE

- use conditional Sliced-Wasserstein Autoencoder
 - SW gives flexibility in the use of latent space distributions

• string energy E_i is encoded in a label \bar{c}_i

$$\bar{c}_i = \frac{E_{\max} - E_i}{E_{\max} - E_{\min}},$$

- training data: \mathbf{x}_i sorted vector of 100 first emission
 - either p_z or p_T values
- loss function
 - J. Zupan ML hadronization

$$\mathcal{L}(\psi,\phi) = \mathcal{L}_{
m rec} + \mathcal{L}_{
m SW},$$

9

SM@LHC, July 10, 2023

MLHAD AS A GENERATOR

 MLhad as a generator of the hadronization chains

- h_i hadron
- *s_i* string fragment
- *p_j* 4-momentum
- Λ Lorentz transform
- FS flavor-selector

RESULTS - FIRST EMISSION

• MLhad generated *p*_z distribs.

RESULTS - FIRST EMISSION

• MLhad generated p_T distribs.

2023

GENERATING HADRONIZATION CHAINS

 number of hadrons produced in hadronization of 50 GeV string

E DEPENDENT DISTRIBUTIONS

- train on first hadron emissions at $E = \{5, 30, 700, 1000\}$ GeV
- generate at a different set of string energies

GENERATING HADRONIZATION CHAINS

• the distributions match over a range of string energies

RECAP

- MLhad architecture captures well (simplified) Pythia Lund string model
- proof of principle need to see how this ports to training on data

NEXT STEPS

- to train on data
 - want fast evaluation of parameter dependency
 - use reweighting method
 - first implementation in Pythia for Lund string model (to be released soon in Pythia) Ilten et al, 2307.nnnnn
- propagation of errors

Ilten et al, 2308.nnnn,

see backup slides

 alternative ML architecture with Bayesian normalizing flows

REWEIGHTING HADRONIZED PYTHIA EVENTS

Ilten et al, 2307.nnnnn

- event generation is time-consuming
 - want to reweight events without regenerating
- in Pythia the Lund string fragmentation function sampled via standard veto algorithm
 - if rejected instances are kept \Rightarrow
 - a modified veto algorithm ⇒ new event weights for diff. hadronization params.

REWEIGHTING HADRONIZED PYTHIA EVENTS

REWEIGHTING HADRONIZED PYTHIA EVENTS

REWEIGHTING HADRONIZED PYTHIA EVENTS Ilten et al, 2307.nnnnn

NEXT STEPS

- a series of progressive steps to be done before practically useful in Pythia simulations
 - ML architecture that mimicks a simplified Lund string hadronization model
 - train ML on truth level Pythia output (not obs. in exp)
 - develop a framework to propagate errors
 - improved ML architecture with full hadron flavor selector
 - train on mock data (i.e. just observable information)
 - train on real data (i.e. just already measured information)
 - replace/supplement Pythia string model

J. Zupan ML hadronization

we are

here

partial results

(not shown

CONCLUSIONS

- MLhad: first steps in creating ML based description of hadronization
 - cSWAE reproduces simplified first hadron emission model
 - efficient parameter variation of Pythia hadronized events through reweighting
- long term: achieve a full fledge ML based description of hadronization

BACKUP SLIDES

CLUSTER MODEL

- assign mass to gluons, decay them to $q\bar{q}$ pairs
 - these are color singlets: *primary clusters*
 - primary clusters have universal mass distrib
- heavier clusters are decayed to lighter ones (model dep. step)
- relatively small set of params, $\mathcal{O}(30)$

CLUSTER MODEL

- assign mass to gluons, decay them to $q\bar{q}$ pairs
 - these are color singlets: *primary clusters*
 - primary clusters have universal mass distrib
- heavier clusters are decayed to lighter ones (model dep. step)
- relatively small set of params, $\mathcal{O}(30)$

CLUSTER MODEL

- assign mass to gluons, decay them to $q\bar{q}$ pairs
 - these are color singlets: *primary clusters*
 - primary clusters have universal mass distrib
- heavier clusters are decayed to lighter ones (model dep. step)
- relatively small set of params, $\mathcal{O}(30)$

COLOR RECONNECTION

- all perturbative predictions in leading color approximation ($N_c \rightarrow \infty$ with $\alpha_s N_c$ fixed)
 - direct mapping of color flow to strings
- color reconnection: inclusion of $1/N_c$ suppressed terms (model dep.)
 - reassing colors, not change in parton momenta
 - several examples where important
 - first historic mention: for charmonium production in *B* decays
 - for multiple parton interactions (Pythia MPI model) Sjöstrand, Zijl, 1987
 - $e^+e^- \rightarrow W^+W^- \rightarrow 4j$ at LEP 2 excludes no CR hypothesis 1302.3415
 - top quark mass determination from hadronic tops
 - several color reconnection models in Pythia

102

Pyhia 8.3 manual, 2203.11601

Fritzch, 1977; Ali et al, 1979

CHALLENGES FOR HADRONIZATION MODELS

Fischer, Sjostrand, 1610.09818

- in general out of the box hadronizations models work within 20-50%
- some challenges for Pythia
 - change of flavor composition with event multiplicity
 - high multiplicity events have higher strangenesss content
 - no mechanism in Pythia to mimic it
 - average $\langle p_T \rangle$ larger for heavier particles, trend ok in Pythia, but numerically not large enough
 - charge particle p_T spectrum not correctly modelled at low p_T
 - partially can be fixed by tunes, but then a problem at interm. p_T
 - there is a peak in $\Lambda/K p_T$ spectrum at $p_T \sim 2.5$ GeV, not reproduced by Pythia
 - the observation of the ridge in *pp* requires collective effects
- at least some of them addressed in Pythia 8.3 by introducing more involved models of string interactions, thermodynamical string fragmentation model, etc.
- Herwig has a different set of challenges, e.g., predicting heavy baryon distributions

RESULTS - FIRST EMISSIONS

- three different latent space distributions used
- cSWAE training configurations

		latent space dim	e L _s	w vs. I	Zrec #	t of SW
Variable \boldsymbol{x}	Target \boldsymbol{z}	$\mid t \; (ext{epochs})$	d_z	λ	\dot{L}	
p_z'	Pythia	150	35	35	15	-
	Trapezoidal	300	2	20	30	
	Triangular	150	2	30	25	
p_T	Pythia	100	20	30	30	-
	Skew-norm	120	4	20	25	
	Triangular	120	4	15	25	_

J. Zupan ML hadronization

MLHAD

- right now trained directly on Pythia first emission output
 - hadron mom. described by p_z, p_T
- the IR cut-off has two effects
 - p_z and p_T distributions are uncorellated
 - makes the problem scale invariant in p_Z
 - enough to train at one string mass, $2E_{ref}$
 - for other energies can rescale

$$p'_z \equiv E_{\rm ref} \frac{p}{E},$$

• this is relaxed in the end, *E* dependence can be recovered

• p_z and p_T distributions are uncorellated

- makes the problem scale invariant in p_Z
 - enough to train at one string mass, $2E_{ref}$
 - for other energies can rescale

$$p'_z \equiv E_{\rm ref} \frac{p}{E},$$

• this is relaxed in the end, *E* dependence can be recovered

MLHAD WITH NORMALIZING FLOWS

MLHAD WITH NORMALIZING FLOWS

 Bayesian NF captures well the uncertainties

31