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MONTE CARLO HEP EVENT
e block structure of HEP Monte Carlo

under good perturbative control
and systematically improvable

® hard process }
e shower
e hadronization } modeling of nonperturbative physics

® (detector simulation)
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MONTE CARLO HEP EVENT

e block structure of HEP Monte Carlo

® hard B under good perturbative control
and systematically improvable

® shower
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HADRONIZATION

e two main models for hadronization
® Lund string model (Pythia)
e cluster hadronization model (Herwig)

e both have as a starting point "colour preconfinement"
stage of QCD shower

Amati, Veneziano, PLB83, 1979

e stop shower at
some scale (),

e inlarge N. -
limit planar graphs

e groups final g, g, g in
QCD singlet clusters

J. Zupan ML hadronization 3




LUND STRING MODEL

strings connect gq systems

gluons kinks in strings

e split gluons to a collinear gg pair = string pieces
string pieces break into hadrons (model dep.)

e controlled by Lund string fragmentation function
Pythia Lund string model: many parameters, ©(200)

¢ many of these related to color reconnection

J. Zupan M

Pythia 8.3 manual, 2203.11601
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WHEN SHOULD WE CARE
ABOUT HADRONIZATION?

if observables/ measurements inclusive enough no
need for modeling hadronization

not the situation in the real world

® experimental cuts, detectors not perfect, resonances
decay in different ways

® modeling well hadronization step essential for
precision studies

some measurements more sensitive than others

® e.g., number of charged particles, correlations
between exclusive states, etc.

J. Zupan ML hadronization 5 SM@LHC, July 10, 2023
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ML FOR HADRONIZATION

MLhad: Ilten, Menzo, Youssef, ]Z, 2203.04983, https:/ / gitlab.com /uchep /mlhad
see also HadML: (Chan, Ghosh,) Ju, (Kania), Nachman, (Sangli,) Siodmok, 2203.12660, 2305.17169

e MLhad: the long term goal

® use ML to "parametrize our
ignorance" about hadronization, use
data

e more immediate

® reproduce simplified version of
Pythia Lund string model

J. Zupan ML hadronization 6 SM@LHC, July 10, 2023



ML FOR HADRONIZATION

* a series of progressive steps to be done before practically
useful in Pythia/MC simulations

® ML architecture that mimicks a simplified Lund string
hadronization model

e train ML on truth level Pythia output (not obs. in exp)

® develop a framework to propagate errors

e improved ML architecture with full hadron flavor selector
® train on mock data (i.e. just observable information)

® train on real data (i.e. just already measured information)

e replace/supplement Pythia string model

J. Zupan ML hadronization 7 SM@LHC, July 10, 2023



Ilten, Menzo,Youssef, JZ, 2203.04983

SIMPLIFIED STRING
HADRONIZATION MODEL

e assume that color reconnection done correctly by Pythia

e want to reproduce first hadron emission from a string piece with ¢, g ends
® the whole hadronization chain is then reproduced by iterating
e the string is labeled by g, g flavor and its energy in cms, 2E

e simplified flavor selector: only emission of pions

e have an IR cut-off of 5 GeV, at which hadronization chain terminates

(E,p)
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CSWAE

e use conditional Sliced-Wasserstein Autoencoder

® SW gives flexibility in the use of latent space distributions

LNN | LNN

r;——| Encoder > Z; > Decoder |—— ;

EI‘GC

e string energy L, is encoded in a label ¢;
Fmax — Ej
Emax — Emin7

0 . M P, . . .
e training data: X; sorted vector of 100 first emission

C; —

e either p, or py values

e Joss function L(Y, ) = Lrec + Lsw,

J. Zupan ML hadronization - 9 WSSM@LHC, July 10, 2023



MLHAD AS A GENERATOR

* h; hadron
e MLhad as a generator of the . s, string fragment
. : . * pj 4-momentum
hadronization chains . A Lorentz transform

 FS flavor-selector
e D decoder
Zl(El) C1 F’A—’ ZQ(EQ) C2

) 1
\ pe \ -

D [Impose E/pJ D _»A/

hl Phy) (h2, Ph,)

S1—> F —>82 > FS — S3

‘ Pythia) Pythia)

Stopping condition : F; < E.y
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RESULTS - FIRST EMISSION
e MLhad generated p, distribs.
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RESULTS - FIRST EMISSION

e MLhad generated p; distribs.
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GENERATING
HADRONIZATION CHAINS

e number of hadrons produced in
hadronization of 50 GeV string

PyTHIA (Avg. = 9.06 £ 0.08)
MLHAD (Avg. = 9.15 £ 0.06)
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E DEPENDENT
DISTRIBUTIONS

e train on first hadron emissions at E = {5, 30, 700, 1000} GeV

e generate at a different set of string energies
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GENERATING
HADRONIZATION CHAINS

e the distributions match over a range of string energies
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RECAP

e MLhad architecture captures well
(simplified) Pythia Lund string model

e proof of principle - need to see how this
ports to training on data

J. Zupan ML hadronization 16 SM@LHC, July 10, 2023



NEXT STEPS

* to train on data
e want fast evaluation of parameter dependency
® use reweighting method

e first implementation in Pythia for Lund string
model (to be released soon in Pythia)  fienetal 2307.nnnmn

[lten et al, 2308.nnnnn,

e propagation of errors see backup slides

® alternative ML architecture with Bayesian
normalizing flows

J. Zupan ML hadronization 17 SM@LHC, July 10, 2023



REWEIGHTING HADRONIZED
PYTHIA EVENTS

I[lten et al, 2307.nnnnn

* event generation 1s time-consuming

e want to reweight events without
regenerating

 in Pythia the Lund string fragmentation
function sampled via standard veto algorithm

e if rejected instances are kept =
e a modified veto algorithm = new event

weights for diff. hadronization params.

J. Zupan ML hadronization 18 SM@LHC, July 10, 2023



REWEIGHTING HADRONIZED
PYTHIA EVENTS

Event: 1 2 3 4 5 6
par:i -
Q
o .
£ par=)
(¢8)
(V)
par=k

Instead of generating three
samples with weight=1,
generate one sample with
weight={1, w;, w,}

Sample

9 ——— o raphics by M. K. Wilkinson
e et




REWEIGHTING HADRONIZED
PYTHIA EVENTS

ete™ - Z — jets Iten et al, 2307.nnnnn
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REWEIGHTING HADRONIZED
PYTHIA EVENTS

—— Fit: 0.3067 +0.0319 x x + 0.0009 x x? —
] Means

[Iten et al, 2307.nnnnn
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NEXT STEPS

* a series of progressive steps to be done before practically
useful in Pythia simulations

® ML architecture that mimicks a simplified Lund string
hadronization model

e train ML on truth level Pythia output (not obs. in exp)

® develop a framework to propagate errors

e improved ML architecture with full hadron flavor selector .
partial results

® train on mock data (i.e. just observable information) \Y (notshown)
m
® train on real data (i.e. just already measured information)

® replace/supplement Pythia string model

J. Zupan ML hadronization 22 SM@LHC, July 10, 2023



CONCLUSIONS

e MLhad: first steps in creating ML based
description of hadronization

® cSWAE reproduces simplified first
hadron emission model

e efficient parameter variation of Pythia
hadronized events through reweighting

e long term: achieve a full fledge ML based
description of hadronization

J. Zupan ML hadronization 23 SM@LHC, July 10, 2023
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CLUSTER MODEL

e assign mass to gluons, decay them to gg pairs
e these are color singlets: primary clusters
e primary clusters have universal mass distrib
e heavier clusters are decayed to lighter ones (model dep. step)

e relatively small set of params, ©(30)

Pyhia 8.3 manual, 2203.11601
J. Zupan ML h: _.uly 10, 2023



CLUSTER MODEL

e assign mass to gluons, decay them to gg pairs

e these are color singlets: primary clusters

e primary clusters have universal mass distrib
e heavier clusters are decayed to lighter ones (model dep. step)
e relatively small set of params, ©(30)
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CLUSTER MODEL

e assign mass to gluons, decay them to gg pairs
e these are color singlets: primary clusters
e primary clusters have universal mass distrib
e heavier clusters are decayed to lighter ones (model dep. step)

e relatively small set of params, ©(30)

a) Primary clusters b) After cluster splitting
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COLOR RECONNECTION

e all perturbative predictions in leading .
color approximation (N, — oo with a N, fixed) CERGRE
® direct mapping of color flow to strings
e color reconnection: inclusion of 1/N, suppressed terms (model dep.)
® reassing colors, not change in parton momenta

Pyhia 8.3 manual, 2203.11601
® several examples where important

Fritzch, 1977; Ali et al; 4948
e first historic mention: for charmonium production in B decays

* for multiple parton interactions (Pythia MPI model)  Sjostrand, Zijl, 1987
o ¢ee™ > WTW™ — 4j at LEP 2 excludes no CR hypothesis  1302.3415
® top quark mass determination from hadronic tops

e several color reconnection models in Pythia

J. Zupan ML hadronization 26 SM@LHC, July 10, 2023



CHALLENGES FOR
HADRONIZATION MODELS

Fischer, Sjostrand, 1610.09818

e in general out of the box hadronizations models work within 20-50%
e some challenges for Pythia
® change of flavor composition with event multiplicity
® high multiplicity events have higher strangenesss content
® no mechanism in Pythia to mimic it

e average (py) larger for heavier particles, trend ok in Pythia, but numerically not
large enough

e charge particle p; spectrum not correctly modelled at low py

e partially can be fixed by tunes, but then a problem at interm. p;
e there is a peak in A/K p;spectrum at p; ~ 2.5 GeV, not reproduced by Pythia
e the observation of the ridge in pp requires collective effects

e atleast some of them addressed in Pythia 8.3 by introducing more involved models
of string interactions, thermodynamical string fragmentation model, etc.

e Herwig has a different set of challenges, e.g., predicting heavy baryon distributions

J. Zupan ML hadronization 27 SM@LHC, July 10, 2023



RESULTS - FIRST EMISSIONS

e three different latent space distributions used

e ¢SWAE training configurations

latent space

dim

LSW VS.

# of SW slices

€C

=

fv

Variable x Target z t (epochs)
PYTHIA 150 30 35 15
P, Trapezoidal 300 2 20 30
Triangular 150 2 30 25
PYTHIA 100 20 30 30
pT Skew-norm 120 4 20 25
Triangular 120 4 15 25

J. Zupan ML hadronization

SM@LHC, July 10, 2023
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e cSWAE training configurations

latent space
d1mp Lgw vs. L. # of SW slices

s

Variable & | Target z | ¢t (epochs)
PYTHIA 150 35 35 19
P, Trapezoidal 300 2 20 30
Triangular 150 2 30 25
PyYTHIA 100 20 30 30
pT Skew-norm 120 4 20 25
Triangular 120 4 15 25
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MLHAD

e right now trained directly on Pythia first emission output

e hadron mom. described by p,, p;

¢ the IR cut-off has two effects

e p. and p; distributions are uncorellated

e makes the problem scale invariant in p,
e enough to train at one string mass, 2E_;
e for other energies can rescale

S =B
y = refEa

e this is relaxed in the end, E dependence can be recovered

J. Zupan ML hadronization 29 SM@LHC, July 10, 2023
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MLHAD WITH

NORMALIZING FLOWS
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MLHAD WITH
NORMALIZING FLOWS

e Bayesian NF captures well the
uncertainties
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