Jet substructure and fragmentation at the LHC

<u>Cristian Baldenegro</u> (Laboratoire Leprince-Ringuet) on behalf of the LHC experiments

SM@LHC 2023 at Fermilab July 10th – July 14th

European Research Council

Jet constituents momenta are mapped onto physically transparent observables

(slightly modified) sketch from Jesse Thaler

Several tools that give us access to the internal dynamics of the jet

Jet substructure can be used to:

- Stress test precision "pen-and-paper" calculations (**resummation**) and MC generators (parton showers, hadronization, UE)
- Tag objects (parton flavors, boosted objects)
- mitigate pileup/UE (e.g., via grooming)
- get a space-time picture of the quark-gluon plasma

I'll focus mostly on recent (pp) measurements:

- Stress test precision "pen-and-paper" calculations (**resummation**) and MC generators (parton showers, hadronization, UE)
- Tag objects (parton flavors, boosted objects)
- mitigate pileup/UE (e.g., via grooming)
- get a space-time picture of the quark-gluon plasma

Fragmentation Functions

Single hadron

Fragmentation functions in Z-tagged jet events (LHCb)

LHCb designed mainly for flavor physics at the LHC

 \rightarrow equipped with particle ID from 2 < p < 100 GeV, which can be used for jet substructure

Jets in LHCb acceptance are mostly quark jets (~70% quark jets)

Study two different fragmentation variables

$$z\equivrac{\mathbf{p}_{jet}\cdot\mathbf{p}_{hadron}}{\left|\mathbf{p}_{jet}
ight|^{2}} \qquad j_{T}\equivrac{\left|\mathbf{p}_{jet} imes\mathbf{p}_{hadron}
ight|}{\left|\mathbf{p}_{jet}
ight|^{2}}$$

longitudinal

transverse

Triple differential distributions in j_{τ} , z & p_{τ}^{jet} for unidentified hadrons

Some kinematical correlations are visible (harder p_T^{jet} gives access to lower z, higher z gives access to larger j_T)

LHCb, arXiv:2208.11691

Comparison for unidentified hadrons in Z-tagged jet events LHCb, arXiv:2208.11691

Universality between jet p_T bins at high z

Higher $p_{T}^{\ jet}$ gives access to lower z and higher j_{T} values

PYTHIA8 generally describes fragmentation function of **unidentified** charged hadrons

Identified charged hadrons (K[±], p^{\pm} , π^{\pm})

PYTHIA8 predicts larger abundance of hard K^{\pm} and p^{\pm} at **low** p_{T}^{jet} than is seen in data

Complementary information to minimum-bias spectra analyses, can help pin down mechanisms for baryon and meson production

LHCb, arXiv:2208.11691

9

Fragmentation of b-quarks

b-jet have a distinct fragmentation pattern compared to light-quark jets

(harder fragmentation + dead cone effect due to mass effects)

- Important for top quark and and $H \rightarrow b\overline{b}$ measurements
- b-fragmentation function tuned to e⁺e⁻ data, then used at LHC energies and environment

To what extent does this work?

Predicted fragmentation functions in e^+e^- collisions from simulation

Differences of O(10%) between different PS and hadronization models for LEP environment. What can we do at the LHC?

b-quark fragmentation in top quark pair events

• 1µ 1e golden channel; clean events with primary b-jets

• exactly 2 *b*-jets with p_T >30 GeV, $|\eta| < 2.1$, and ΔR (jet, jet) > 0.5, clustered with anti-k, algorithm with R = 0.4.

• Proxy for *b*-hadron using charged-particle tracks in secondary vertex

Reconstruct 3-momentum of "charged" b-hadron $\overrightarrow{P}_{b}^{ch}$

Compare with charged component of jet $\overrightarrow{p}_{iet}^{ch}$

ATLAS, arXiv:2202.13901,

PRD 106 (2022) 032008

Longitudinal and transverse fragmentation variables

Corrections to particle-level with fully Bayesian unfolding method

 $z_{\mathrm{L},b}^{\mathrm{ch}} = \frac{p_b^{\mathrm{cn}} \cdot \vec{p}_{\mathrm{jet}}^{\mathrm{ch}}}{2}$ $p_{\perp}^{ch}|^2$ $1/\sigma d\sigma/dz_{L,b}^{ch}$ $/\sigma d\sigma/dz_{T,b}^{ch}$ 3.5 Data 3.5 Data Pow+Py8 A14 $r_B = 0.855 \alpha_S^{FSR} = 0.127$ Pow+Py8 A14 $r_B = 0.855 \alpha_S^{FSR} = 0.127$ Pow+Her 7.1.3 Pow+Her 7.1.3 Sherpa 2.2.10 Sherpa 2.2.10 2.5 2.5 2 ATLAS ATLAS 1.5 1.5 $\sqrt{s} = 13 \,\text{TeV}, 36 \,\text{fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^-$ 0.5 0.5 0 11 0 1.4 1.4 1.2 1.2 Ratio to data Ratio to data 1.0 1.0 - - -0.8 0.8 0.6 0.6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.9 Z_{L,b} Z^{ch}_{T,b}

Simulations do a reasonable job in describing fragmentation variables

ATLAS, <u>arXiv:2202.13901</u>, PRD 106 (2022) 032008

Fragm. function parametrization and α_s^{FSR}

ATLAS, <u>arXiv:2202.13901</u> PRD 106 (2022) 032008

Ratio to data

b-quark fragmentation via $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$ decays

 $z = \frac{\vec{p}_B \cdot \vec{p}_j}{|\vec{p}_j|^2}; \quad p_{\rm T}^{\rm rel} = \frac{|\vec{p}_B \times \vec{p}_j|}{|\vec{p}_j|},$

Fully reconstructed B[±] hadrons in b-jets using exclusive decay channel:

b-jets in **inclusive jet** sample (flavor excitation + flavor creation + gluon splitting) using R = 0.4 anti- k_{τ} jets, $p_{\tau} > 35$ GeV and $|\eta| < 2.1$

Two fragmentation variables are analyzed (showing *z* in this presentation)

ATLAS, arXiv:2108.11650, JHEP 12 (2021) 131

14

Fragmentation variable z =

Corrected to particle-level with D'Agostini unfolding

 $p_B \cdot p_j$

 $|\vec{p}_{j}|^{2}$

PYTHIA8 tunes and fragmentation function tested are consistent with data within the uncertainties

Differences between H7 angle-ordered & H7 dipole at low-*z* (z < 0.5), correlated to g \rightarrow bb modeling

ATLAS, arXiv:2108.11650, JHEP 12 (2021) 131

Main uncertainties related to mass fits, unfolding model, jet energy calibration.

energy flow, jet shapes

All hadrons

Energy-energy correlators for jet substructure

A. Larkoski, G. Salam, J. Thaler, <u>JHEP06(2013)108</u>

energy-weighted cross section

$$\frac{\mathrm{d}\sigma_{\mathrm{EEC}}}{\mathrm{d}R_{\mathrm{L}}} = \sum_{i,j} \int d\sigma(R'_{\mathrm{L}}) \frac{p_{\mathrm{T},i} p_{\mathrm{T},j}}{p_{\mathrm{T},j\mathrm{et}}^2} \,\delta(R'_{\mathrm{L}} - R_{\mathrm{L},ij})$$
$$R_{\mathrm{L}} = \sqrt{\Delta\varphi_{ij}^2 + \Delta\eta_{ij}^2}$$

Observable connected to conformal field theory approaches

sketch from Ian moult

Energy-energy correlators for jet substructure

A. Larkoski, G. Salam, J. Thaler, <u>JHEP06(2013)108</u>

energy-weighted cross section

$$\frac{\mathrm{d}\sigma_{\mathrm{EEC}}}{\mathrm{d}R_{\mathrm{L}}} = \sum_{i,j} \int d\sigma(R'_{\mathrm{L}}) \frac{p_{\mathrm{T},i} p_{\mathrm{T},j}}{p_{\mathrm{T},j\mathrm{et}}^2} \,\delta(R'_{\mathrm{L}} - R_{\mathrm{L},ij})$$
$$R_{\mathrm{L}} = \sqrt{\Delta\varphi_{ij}^2 + \Delta\eta_{ij}^2}$$

Observable connected to conformal field theory approaches

Soft particle pairs are "penalized" with small energy weights (typically at small $\rm R_{\rm L}$)

Hard radiation is "rewarded" with larger weights (typically at large R_L)

No jet grooming to suppress soft physics is required

Cristian Baldenegro (LLR)

18

$$\frac{\mathrm{d}\sigma_{\mathrm{EEC}}}{\mathrm{d}R_{\mathrm{L}}} = \sum_{i,j} \int d\sigma(R'_{\mathrm{L}}) \frac{p_{\mathrm{T},i} p_{\mathrm{T},j}}{p_{\mathrm{T},j\mathrm{et}}^2} \,\delta(R'_{\mathrm{L}} - R_{\mathrm{L},ij})$$

How to measure these experimentally?

1. For a given pair of jet constituents, fill a histogram with weight = $p_{T,i} p_{T,j} / p_{T,jet}^2$ at entry $R_L = \Delta R_{ij}$

2. Iterate step 1 for all possible pairs in the jet (there will be multiple histogram entries per jet)

3. Do this for all jets, and you obtain an energy-weighted two-particle correlation distribution

Proof of concept using CMS OpenData

Access to scaling properties of QCD

Energy-energy correlators measurement (ALICE)

Bin-by-bin corrections to particle-level, dominated by physics model (H7 vs P8), syst. unc. at the 4%-level

PY8/H7 undershoot data at low R_L (nonperturb.) **H7** describes data better (perturbative)

20

Comparison to analytical calculations

Based on K. Lee, B. Meçaj, I. Moult arXiv:2205.03414

pQCD NLL calculations correspond to neutral+charged jets & are normalized to data in **perturbative region** (large R_L)

At small R_L, free hadron scaling is followed, deviation due to transition to short-distance physics

scaling properties

EECs as function of R,

scale $R_L \rightarrow p^{jet}_{\ T} R_L$

Normalize to their integrals scaling behavior observed (within uncertainties)

Ungroomed Les Houches Angularity ($\lambda_{0,5}^{1}$) in Z-jet and dijet events <u>JHEP 01 (2022) 188</u>

pQCD calculations D. Reichelt, S. Caletti, O. Fedkevych, S. Marzani, S. Schumann, G. Soyez, JHEP 03 (2022) 131

Groomed Les Houches Angularity in Z-jet and dijet events

JHEP 01 (2022) 188

Soft-drop grooming ($z_{cut} = 0.1$, $\beta_{sd} = 0$) to remove soft and wide-angle radiation

More challenging to describe gluon-enriched jets

Mismodeling at large LHA increase after removing soft&wide-angle radiation

 $\lambda_{\beta}^{\kappa} = \sum_{i \in jet} z_{i}^{\kappa} \left(\frac{\Delta R_{i}}{R}\right)^{\beta} \quad z_{i} \equiv \frac{p_{Ti}}{\sum_{j \in jet} p_{Tj}}$

pQCD calculations D. Reichelt, S. Caletti, O. Fedkevych, S. Marzani, S. Schumann, G. Soyez, JHEP 03 (2022) 131

CMS, arXiv:2109.03340, Dijet/Z+jet ratio (g-enriched/q-enriched) JHEP 01 (2022) 188 gluon-LHA/quark-LHA > 1 (mostly due to $C_{A} > C_{F}$) uncertainties partially cancel in • *"old" CMS tunes* "new" CMS tunes dijet/Z+jet ratio (<~ 5% off) (up to ~10% off) CMS CMS 🕂 Data g-enriched $\langle \lambda_{\beta}^{\kappa} \rangle$ g-enriched $\langle \lambda_{\beta}^{\kappa} \rangle$ 🕂 Data (NB) g-enriched $\langle \lambda^{\kappa}_{\beta}$ **Data uncertainty** MC simulations overestimate **Data uncertainty** q-enriched Pythia8 CP5 MG5+Pythia8 Pythia8 CP2 q-enriched/q-enriched ratio CUETP8M1 Herwig7 CH3 Herwig++ Sherpa LO → Sherpa LO+jet (1) AK4, [120, 150] GeV Simulation Data <u>Simulation</u> Data (1) AK4, [120, 150] GeV (2) AK4, [1, 4] TeV (2) AK4, [1, 4] TeV g-enriched / g-enriched ratio is (3) AK8, [120, 150] GeV • (3) AK8, [120, 150] GeV (4) AK4, [120, 150] GeV, (4) AK4, [120, 150] GeV, better modelled with "old" charged charged (5) AK4, [120, 150] GeV, (5) AK4, [120, 150] GeV, PYTHIA8/HERWIG7 tunes (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) groomed aroomed LHA $(\lambda_{0.5}^1)$ LHA $(\lambda_{0,5}^1)$

full summary plot in backup (other angularities)

Iterative declustering

Organizing hadrons

In soft & collinear limit of QCD, emissions fill the double-logarithmic plane of k_{τ} and ΔR uniformly

$$\mathcal{P} \propto \alpha_{\rm s} \frac{\mathrm{d}k_{\rm T}}{k_{\rm T}} \frac{\mathrm{d}\Delta R}{\Delta R} = \alpha_{\rm s} \mathrm{d}\ln(k_{\rm T}) \mathrm{d}\ln(\Delta R) \leftarrow \text{approximate self-similarity of QCD}$$

Constructing the *primary* Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064

- 1. Jet constituents are reclustered with the CA algorithm.
- 2. Follow clustering tree in reverse (large \rightarrow small angles), along the hardest branch
- 3. k_T and ΔR of the softer subjet (**emission**) relative to the harder subjet (**core**) is registered at each step

$$\Delta R = \sqrt{(y_{\text{soft}} - y_{\text{hard}})^2 + (\phi_{\text{soft}} - \phi_{\text{hard}})^2}$$
$$k_{\text{T}} = p_{\text{T}}^{\text{soft}} \Delta R$$

4. Repeat 2-3 until hard branch has a single constituent

Previously measured by ATLAS <u>PRL 124, 222002 (2020)</u> and ALICE <u>ALICE-PUBLIC-2021-002</u>

Angular ordering privileges QCD collinear divergence & mimics color coherence effects

Primary Lund jet plane density

We measure the jet-averaged density of emissions:

$$\frac{1}{N^{\text{jets}}} \frac{\mathrm{d}^2 N_{\text{emissions}}}{\mathrm{d} \ln(k_T) \mathrm{d} \ln(R/\Delta R)} \simeq \frac{2}{\pi} C_R \alpha_s(k_T)$$

soft & collinear limit

(C_R is a color factor, C_A = 3 for $g \rightarrow gg$, C_F = 4/3 for $q \rightarrow qg$)

CMS Run-2 setup CMS-PAS-SMP-22-007 :

- $p_T^{jet} > 700 \text{ GeV}, |y^{jet}| < 1.7,$ anti- k_T with small R = 0.4 and large R = 0.8
- Using charged constituents for the substructure
- Unfolded with D'Agostini to particle-level $(p_T^{jet}, ln(k_T), \Delta R)$

Can use Lund plane density to improve and test calculations in a "factorized" way

measured by ATLAS PRL 124, 222002 (2020) and ALICE ALICE-PUBLIC-2021-002

Unfolded primary Lund jet plane densities CMS-PAS-SMP-22-007

R=0.8 (wider & harder emissions)

Densities approximately flat for hard & collinear emissions due to running of α_s

Differences between data & MC of the order of 10–20%. "Factorization" of effects can be used for MC tuning

Herwig7.2 angle-ordered shower performs better than Herwig7.2 dipole shower

Comparison to pQCD analytical calculations (NLO+NLL+NP)

data from ATLAS Lund plane, PRL 124, 222002 (2020)

Identification of boosted W boson jets with Lund plane ATL-PHYS-PUB-2023-017

W boson jets (signal)

New results from ATLAS, more details presented by Jad Sardain at Lund plane workshop 34 Cristian Baldenegro (LLR)

ANN is able to recover QCD bkg NN is able to recover boosted W boson signal LundNet[™] : bkg rejection by a factor of roughly ~2.5–3 wrt standard taggers (DNN, 3-variable based)

bkg rejection reduced by about 25% with LundNet^{ANN} (used for mass decorrelation)

Summary

 LHC precision jet substructure measurements allows us to stress test our understanding of the internal dynamics of the jet

 More complete list of LHC jet substructure measurements in LHC-EW WG <u>Twiki</u> page

(Intermezzo) soft-drop grooming algorithm

Jet is reclustered with Cambridge–Aachen (CA), which clusters particles with **angular ordering**

. Follow the CA clustering history in reverse. Check if the branch satisfies the soft-drop condition:

$$z = p_T^{\text{softer}} / (p_T^{\text{softer}} + p_T^{\text{harder}}) > z_{\text{cut}} (\Delta R/R)^{\beta}$$

(a typical choice is $z_{cut} = 0.1, \beta = 0$)

If the splitting fails the SD condition, the branch is removed

Repeat 2 until SD condition is satisfied, which yields a **soft-drop groomed jet**

Dijet/Z+jet ratio (gluon-like/quark-like jet ratio) CMS, arXiv:2109.03340

 experimental uncertainties partially cancel in dijet/Z+jet ratio

 LO+PS preds. overestimate the g-enriched/q-enriched ratio

 g-enriched / q-enriched ratio is better modelled with "old"
 PYTHIA8 and HERWIG7 CMS tunes.

Low-k_T (hadronization + MPI)

CMS-PAS-SMP-22-007

PYTHIA8 systematically overshoots the data at low k_{τ} , regardless of tune or shower option.

HERWIG7 & Sherpa generally do better. Cluster vs string fragmentation?