Testing the strong force with photons and jets SM@LHC 2023, Fermilab, Batavia, Illinois, USA

Matt LeBlanc (Manchester) matt.leblanc@cern.ch, @TopPhysicist

The University of Manchester

LHC Jet & Photon Physics (Selected Run 2 results)

- **QCD predictions**, both analytical and Monte Carlo.

SOFT + COLINEAR RADIATION RESUMMED PREDICTIONS

NON-PERTURBATIVE RADIATION

MODELS OF HADRONISATION, COLOUR RECONNECTION, MPI/VE, ETC.

Photon and jet cross-section measurements are stringent tests of

• Typically, multi-faceted measurements that probe multiple

aspects of our understanding across a wide range of energy scales.

Overview

LHC Jet & Photon Physics (Selected Run 2 results)

PERTURBATIVE RADIATION FIXED-ORDER PREDICTIONS

SOFT + COLINEAR RADIATION RESUMMED PREDICTIONS

CMS Inclusive jets

> CMS Jet multiplicity

ATLAS, CMS Inclusive photon

> **ATLAS** (A)TEECs

ATLAS, CMS Event Shapes

CMS Photon+jet Diphoton

ATLAS Soft-Drop Observables

ATLAS Multijet event isotropies

ATLAS

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 3

... A LOT OF ACTIVITY IN THIS AREA DURING RUN 2!

NON-PERTURBATIVE RADIATION

MODELS OF HADRONISATION, COLOUR RECONNECTION, MPI/VE, ETC.

ALICE Dead cone

ALICE Lund jet plane

CMS Soft-Drop Mass ATLAS, CMS Lund jet plane

ALICE ALICE 2-point Correlators JSS in D0-tagged jets

ATLAS JSS in *W*/*t* jets

LHCb ATLAS JSS of Z-tagged jets Frag. Functions

ALICE Groomed jet mass

ATLAS **B** Fragmentation

CMS JSS angularities

> ALICE $N_{\rm SD}, z_{\rm g}, \theta_{\rm g}$

ALICE Jet axis deflection

LHCb J/Ψ in jets

Overview

LHC Jet & Photon Physics (Selected Run 2 results)

TODAY, I'LL FOCUS MOSTLY ON MEASUREMENTS THAT ARE BEING USED TO IMPROVE MODELS OF PERTURBATIVE QCD.

PERTURBATIVE RADIATION FIXED-ORDER PREDICTIONS SOFT + CO RESUM

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 4

SOFT + COLINEAR RADIATION

RESUMMED PREDICTIONS

NON-PERTURBATIVE RADIATION

MODELS OF HADRONISATION, COLOUR RECONNECTION, MPI/VE, ETC.

ALICE Dead cone

ALICE Lund jet plane

CMS Soft-Drop Mass ATLAS, CMS Lund jet plane ALICEALICE2-point CorrelatorsJSS in D0-tagged jets

ATLAS Soft-Drop Observables ATLAS JSS in *W*/*t* jets ATLASLHCbATLASJSS of Z-tagged jetsFrag. Functions

ALICE

Jet axis deflection

ALICE Groomed jet mass

ALICE

 $N_{\rm SD}, z_{\rm g}, \theta_{\rm g}$

ATLAS *B* Fragmentation

CMS JSS angularities

> *LHCb J/Ψ* in jets

on

6

Photon physics at the LHC Colourless probes of QCD

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 6

Inclusive/isolated y

ATLAS <u>2302.00510</u>, CMS <u>1807.00782</u>.

- Photon production tests QCD while minimising sensitivity to non-perturbative processes (hadronisation, colour reconnection, etc.)
- Major experimental challenge for photon cross-section measurements: estimation of multijet background (high- $p_T \pi^0$ decays).

- Double-sideband estimation in photon identification and isolation used by both ATLAS and CMS.
- Subleading backgrounds: electrons faking photons, pile-up photons.

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 7

Inclusive/Isolated y, y+jet Cross-Sections

ATLAS <u>2302.00510</u>, CMS <u>1807.00782</u>.

- Measured cross-section compared to pQCD predictions across a broad range of transverse energy and rapidity bins.
 - Good agreement generally observed between data and NLO (both), NNLO (ATLAS) theory.
- Dominant uncertainty from photon energy scale (ATLAS), background estimation (CMS).

Inclusive/Isolated y, y+jet Cross-Sections

ATLAS <u>2302.00510</u>, CMS <u>1807.00782</u>. For more on PDFs: ATLAS <u>2112.11266</u>, 13 TeV / 8 TeV photon cross-section ratio: <u>1901.10075</u>

- Measured cross-section compared to pQCD predictions across a broad range of transverse energy and rapidity bins.
 - Good agreement generally observed between data and NLO (both), NNLO (ATLAS) theory.
- Dominant uncertainty from photon energy scale (ATLAS), background estimation (CMS).
- Main production mechanism $qg \rightarrow qy$, leads to gluon PDF sensitivity.
 - Measured data no longer in tension with other inputs to global PDF fits (20+ year tension)!

Inclusive/Isolated y, y+jet Cross-Sections

ATLAS <u>2302.00510</u>, CMS <u>1807.00782</u>

ATLAS : cross-section vs. isolation radius R

Investigates dependence of fiducial cross-section on isolation-cone radius R. No R-dependence at LO \rightarrow direct test of higher-order contributions!

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 10

CMS measured y+jet cross-section at 13 TeV

Run 2 centre-of-mass energy greatly extends kinematic reach of measurement vs. 7 TeV results (previously ended at 400 GeV) → good agreement between data & NLO in central region!

Diphotons (yy) ATLAS 2107.09330

- Continuum diphotons are a **critical Higgs** background!
 - Sophisticated predictions, need *in situ* validation
- Main experimental challenge : **data-driven background estimation** of non-prompt photons from jets.
 - Signal contribution from Poisson likelihood fit in uncorrelated Iso & ID observables, for each photon, for each measurement bin.
- Several simple & complex observables measured, probing different QCD effects.
- Small but interesting **background of photons** from uncorrelated pile-up interactions.
 - Data-driven estimate from converted photons in ID (~0.5% of available diphoton events can be used).
 - Extrapolate PV z-position from calorimeter pointing & conversion vertex information.

\ S		· · · · · · √	<u> </u>	3 Te	eV, 13	 39 fb⁻	1 –
al:	Backgrou	und (s	stat. un	c.):	γj		-
t. unc.		+	-jγ		☐ jj		_
al unc.		+	- electi	ron	γγ	pile-up	
							-
++++++++++++++++++++++++++++++++++++++	┷╄╋╋┇╋╋┱╄╋ ╋╗╍╗╶┚╍╖╍╝╹╻ ┙	+++++++++++++++++++++++++++++++++++++++		*****	 +++++++ ++++		_

							년 <u>353-55</u>
_							ոհող
₽₩₩₩₽₽₽	Rush and a	RPAPE	ng ^{ang}	mod pa		┍╏┲╝┲	
and a start of the	**************************************		┙┙┙┙┙┙┙ ┙				
0.2 0.3	0.4	0.5	0.6	0.7	2 0.8	3 0.9	9 1
						cos θ	* ^(CS)

Diphotons (yy) ATLAS 2107.09330

- Continuum diphotons are a **critical Higgs** background!
 - Sophisticated predictions, need *in situ* validation
- Main experimental challenge : **data-driven background estimation** of non-prompt photons from jets.
 - Signal contribution from Poisson likelihood fit in uncorrelated Iso & ID observables, for each photon, for each measurement bin.
- Several simple & complex observables measured, probing different QCD effects.
- Small but interesting **background of photons** from uncorrelated pile-up interactions.
 - Data-driven estimate from converted photons in ID (~0.5% of available diphoton events can be used).
 - Extrapolate PV *z*-position from calorimeter pointing & conversion vertex information.

Run: 349451 Event: 680807571 2018-05-03 01:22:08 CEST ATLAS <u>2107.09330</u>

multi-leg Sherpa treatment.

	Fixed-order accuracy					Fragmentation		QCD	NP	
	γγ	+1 <i>j</i>	+2 <i>j</i>	+3 <i>j</i>	$+ \ge 4j$	$gg \rightarrow \gamma\gamma$	single	double	res.	effects
Diphox	NLO	LO	-	_	-	LO	N	LO	_	_
NNLOJET	NNLO	NLO	LO	-	-	LO	_	_	_	_
Sherpa	NL	0	L	0	PS	LO	ME	E+PS	PS	\checkmark

needed to reliably model.

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 14

Main systematics from background fit.

Statistically-limited in distribution tails.

Multijet cross-section measurements Most 'isotropic' event in ATLAS Run 2 data

Event: 1358542809 2016-06-02 18:19:05 CEST

- Measurement of **jet multiplicity and** *p***_T** in multijet events, **differential in leading jet** *p***_T and dijet azimuthal separation** (shown).
 - Interpolating between 2- and 3+-jetty tpoologies.
 - Sensitive to higher-order QCD effects
 - Compared to LO & NLO MC setups.
 - **LO Herwig++** performs well for more collimated topologies!
 - LO & NLO MG5_atMC+CA3 predictions include **transverse**momentum dependent parton densities (PB-TMD) & PS \rightarrow fewer tuneable parameters than other MC setups.
- Experimental **Jet Energy Scale** most relevant source of uncertainty.

LEADING-ORDER MC SETUPS

- Comparison of **measured p_T spectra** for four leading jets to LO (left) and NLO (right) predictions.
 - NLO MG5_aMC+Py8 prediction provides accurate estimate of normalisation (SF 0.97x).
 - 3-jet NLO MG5_aMC+CASCADE3 describes radiation beyond leading jet pair "very well"!
 - Uncertainties from μ_R, μ_F variations in NLO predictions cover data/MC differences.
- Experimental Jet Energy Scale most relevant source of uncertainty.

NEXT-TO-LEADING-ORDER MC SETUPS

EVENT SHAPES ... DESCRIBE EVENT-WIDE ENERGY FLOW. ... INTERPOLATE BETWEEN COLLIDER EVENT TOPOLOGIES.

WHICH EVENT IS MOST BACK-TO-BACK?

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 18

WHICH IS MOST ISOTROPIC?

Event Shapes

CMS <u>1811.00588</u>, ATLAS <u>2007.12600</u>

- A staple of QCD, event shapes describe the energy flow in particle collisions.
 - Widespread applications over 50 years, including gluon observation @ PETRA, α_s extractions at LEP, MC tuning and improvement, *etc., etc.*
 - Testbed data for theoretical predictions and Parton Shower Monte Carlo (PSMC) programs.
- ATLAS and CMS have both revisited Event Shapes during Run 2.
 - Larger dataset allows **multi-differential measurements**.
 - Both measurements using **calibrated R=0.4 jets** as inputs to Event Shape calculations.
 - Good precision due to excellent jet performance!
 - For latest, see e.g. ATLAS <u>2303.17312</u> (new!)

	ATLAS	CMS
Inputs	Calibrated jets	Calibrated jets
Differential binning	H _{T2} , N _{jet} (incl. & excl.)	H_{T2}
Dataset	140 fb ⁻¹	2.2 fb ⁻¹
Transverse Thrust	\checkmark	\checkmark
Transverse thrust (minor)	\checkmark	
Transverse Sphericity	\checkmark	
C-parameter	\checkmark	
D-parameter	\checkmark	
Total jet broadening		\checkmark
Total jet mass		\checkmark
Total transverse jet mass		\checkmark

Transverse thrust

CMS <u>1811.00588</u>, ATLAS <u>2007.12600</u>

"How dijet-like is the event?"

$$T_{\perp} = \max_{\hat{n}_{\mathrm{T}}} \frac{\sum_{i} \left| \vec{p}_{\mathrm{T},i} \cdot \hat{n}_{\mathrm{T}} \right|}{\sum_{i} \left| \vec{p}_{\mathrm{T},i} \right|}; \quad T_{m} = \frac{\sum_{i} \left| \vec{p}_{\mathrm{T},i} \times \hat{n}_{\mathrm{T}} \right|}{\sum_{i} \left| \vec{p}_{\mathrm{T},i} \right|}$$

- ATLAS and CMS measurements complementary
 - high-*vs.* low-pT focus
- LO+LL MC generators struggle to describe non-dijet-like region adequately.
 - Agreement slightly better for **NLO H7** and multi-leg **Sherpa 2.1.1** setups.
 - Agreement improves with increasing energy scale, as events become more collimated (refer to publications).

Aplanarity ATLAS <u>2007.12600</u>

"How planar is the event?"

$$\mathcal{M}_{xyz} = \frac{1}{\sum_{i} |\vec{p}_{i}|} \sum_{i} \frac{1}{|\vec{p}_{i}|} \begin{pmatrix} p_{x,i}^{2} & p_{x,i}p_{y,i} & p_{x,i}p_{z,i} \\ p_{y,i}p_{x,i} & p_{y,i}^{2} & p_{y,i}p_{z,i} \\ p_{z,i}p_{x,i} & p_{z,i}p_{y,i} & p_{z,i}^{2} \end{pmatrix}$$

$$S = \frac{3}{2}(\lambda_2 + \lambda_3)$$
$$A = \frac{3}{2}\lambda_3$$

- Agreement in normalisation degrades as jet multiplicity increases (also seen for other observables).
- Sensitive to **perturbative physics** in PS alg.
 - NLO H7 angle-ordered and dipole showers disagree for both small & large values.
 - **Pythia** does not predict enough planar 3and 4-jet events.
 - MG5_aMC@NLO performs well, even at higher N_{let}!

Precision of Event Shape measurements generally limited by the Jet Energy Scale and choice of MC Model for unfolding.

Total jet broadening CMS <u>1811.00588</u>

"How *distributed* is energy within the thrust hemispheres?"

$$B_X \equiv rac{1}{2 P_T} \sum_{i \in X} p_{\mathrm{T},i} \sqrt{(\eta_i - \eta_X)^2 + (\phi_i - \phi_X)^2},$$

- Event Shapes like Broadening are sensitive to npQCD effects (hadronisation / FSR, etc.).
- Improvement in data / MC agreement generally seen as energy scale increases.
 - Radiation becomes more collimated / 'back-to-back,' easier for LO+PS predictions.

 $1/N dN/dln(\tau_{\perp})$

Data

MC

BROADENING IS MORE SENSITIVE TO ISR/FSR TREATMENT!

Total jet broadening CMS <u>1811.00588</u>

"How *distributed* is energy within the thrust hemispheres?"

$$B_X \equiv \frac{1}{2 P_T} \sum_{i \in X} p_{T,i} \sqrt{(\eta_i - \eta_X)^2 + (\phi_i - \phi_X)^2},$$

- Event Shapes like Broadening are sensitive to npQCD effects (hadronisation, etc.).
- Improvement in data / MC lacksquareagreement generally seen as energy scale increases.
 - Radiation becomes more collimated / 'back-to-back,' easier for LO+PS predictions.

Komiske, Metodiev & Thaler, <u>1902.02346</u>, <u>2004.04159</u> *Cesarotti & Thaler, <u>2004.06125</u>*

Energy-Mover's Distance (EMD)

• Event shapes like Thrust identify back-to-back events, not isotropic ones.

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 25

• a.k.a. the **Earth-Mover's Distance** or *p*-Wasserstein class of metrics.

Event Isotropy: event shapes via Optimal Transport (OT)

Cesarotti & Thaler, <u>2004.06125</u> **ATLAS** <u>2305.16930</u>

1D

2D

RING

• 3 EMDs measured per-event:

- 2D extension of isotropy into rapidity-phi space (**IsoCyl16**).
- Used *R*=0.4 PFlow jets (*p*_T > 60 GeV, |y| < 4.4) as inputs to EMD calculations.
- Measurements in inclusive bins of jet multiplicity and $H_{T2} = p_{T,1} + p_{T,2}$.

Visualisation of Optimal Transport calculations

ATLAS <u>2305.16930</u>

Phenomenology of different reference geometries...

Matt LeBlanc (Manchester) — Testing the strong force with photons and jets — SM@LHC 2023, FNAL, USA — Slide 28

1.5п Azimuthal angle, q

Results: *I*_{Ring}¹²⁸ *VS. N*_{jets} **ATLAS** <u>2305.16930</u>

Increase minimum jet requirement

Data/MC disagreement deteriorates at "dijetlike" end: soft activity in the event increases difficulty for MC generators

Events become more isotropic as *Njets is increased (as expected!)*

Concluding remarks

Testing the strong force with photons & jets

- Photon and jet cross-section measurements provide stringent tests of QCD predictions.
 - Typically, **multi-faceted measurements** that probe multiple aspects of our understanding:
 - Strong coupling, PDFs, MC modelling, analytic predictions (fixed-order, resummed), nonperturbative models (hadronisation), etc.
 - Be sure to check out **F. Giuli's talk about extractions of the strong coupling at the LHC** (Wed., 8h00) and J. Huston's talk about Global PDF fits (Wed., 9h00)!
 - Run 3 is an opportunity for experimental & theoretical physicists to collaborate and improve our understanding & tools **before the HL-LHC era starts**!
 - New analyses w/ novel properties resulting from direct collaboration between these communities.
 - Lots of theoretical activity towards more accurate parton shower Monte Carlos : **Report by F. Herren!** (Wed., 9h30)
 - ... commissioning with experimental data will be an exciting opportunity!

Jestening!

Event Shapes: Systematics

ATLAS <u>2007.12600</u>, CMS <u>1811.00588</u>

Leading systematics consistently from JES (Driven by modelling differences in JES response) or **MC modelling** (differences in choice of generator for unfolding procedure).

