

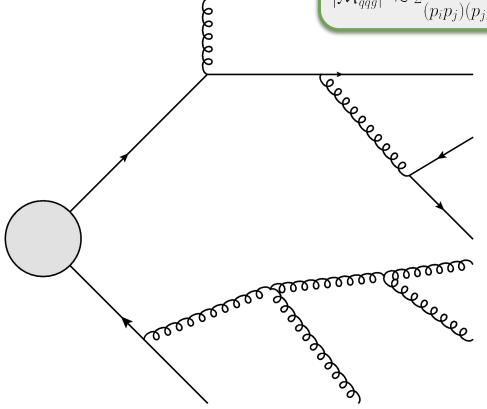
Progress on Parton Showers

Florian Herren

Parton Showers

PS dresses hard process with soft and collinear gluons/quarks; Probabilities given by soft/collinear splitting kernels:

$$|\mathcal{M}_{qqg}|^2 \approx 2 \frac{p_i p_k}{(p_i p_j)(p_j p_k)} |\mathcal{M}_{qq}|^2 \qquad |\mathcal{M}_{qqg}|^2 \approx \frac{P_{qq}(z)}{2(p_i p_j)} |\mathcal{M}_{qq}|^2$$

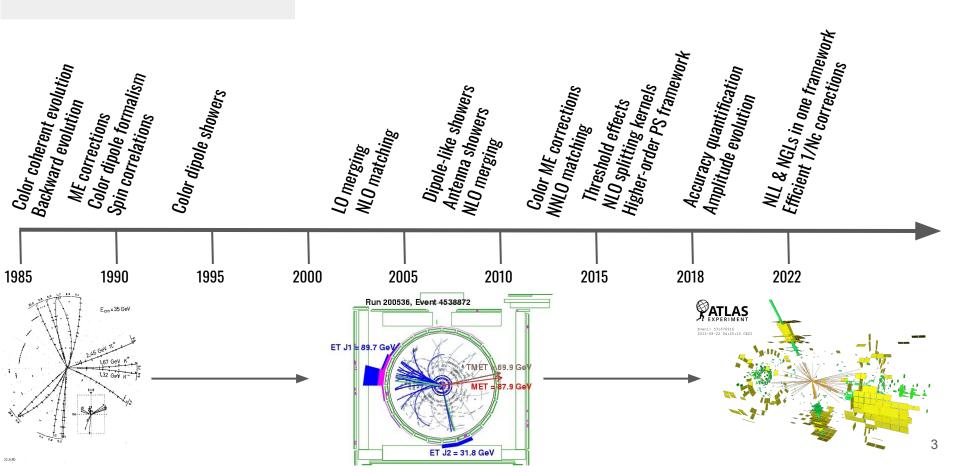


Momentum conservation must be enforced! Need on-shell momentum mapping from n+1 to n parton configurations

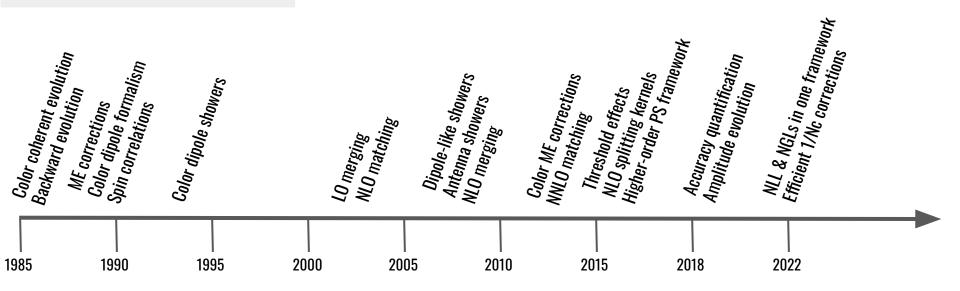
Interfacing to (N)NLO calculation needs PS matching to remove double counting \rightarrow See Talks by Emmanuele Re and Marius Wiesemann

PS resums large logarithms, but to what order?

Parton Showers



Parton Showers



Many developments, but the basics are still the same!

Algorithms used in Practice

We have a good selection of Parton Showers for LHC simulations, allowing for cross-checks and some uncertainty estimates

Project	Evolution variable Coherence		References	
Herwig++	Angle or Dipole-k __ Angular Ordering / Dipole		[Marchesini, Webber <u>Nucl. Phys. B (1988), 461]</u> [Corcella et al. <u>arXiv:hep-ph/0011363]</u>	
Pythia	(Dipole-)k __ Dipole		[Sjöstrand, Skands <u>hep-ph/0408302]</u> [Höche, Prestel <u>1506.05057</u>] (Dire)	
Sherpa	(Dipole-)k _⊥ Dipole		[Schumann, Krauss <u>0709.1027]</u> [Höche, Prestel <u>1506.05057]</u> (Dire)	
Vincia	Dipole- \mathbf{k}_{\perp}	(Sector) Antenna	[Giele, Kosower, Skands <u>0707.3652</u> , <u>1102.2126</u>]	

The agreement between Vincia's antenna shower and the more standard dipole showers validates the dipole approximation

Comparisons

One way to assess the reliability of parton showers is to compare their predictions

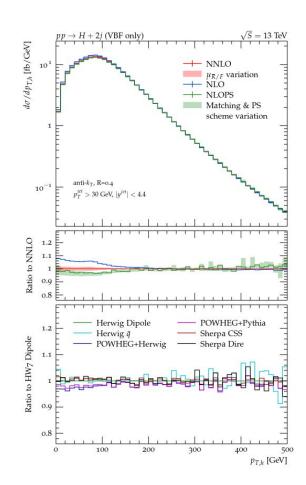
[Buckley et al. <u>2105.11399</u>] [Bellm et al. <u>1903.12563</u>]

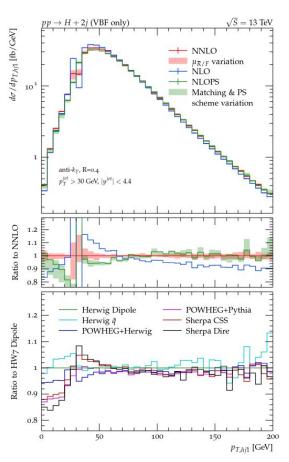
→ Non-trivial, all parameters and hidden assumptions must be the same

NLOPS and NNLO agree reasonably well in most of the phase space

Throughout most of the phase space, different showers show reasonable agreement

PS variation are of similar size as scale variations





Where would we like to be in 10 years from now?

Comparing different parton showers to each other is not a good way to estimate uncertainties

 \rightarrow We need (parametric) uncertainty bands!

We need to make use of the plethora of fixed-order calculations

 \rightarrow Matching!

Parton Showers naively only capture the leading soft and collinear behaviour correctly

 \rightarrow We need to study next-to-leading power corrections!

Where would we like to be in 10 years from now?

Comparing different parton showers to each other is not a good way to estimate uncertainties

 \rightarrow We need (parametric) uncertainty bands!

The way to go is to construct parton showers at NLO and (N)NLL

 \rightarrow Lot's of recent developments

We need to make use of the plethora of fixed-order calculations

 \rightarrow Matching!

People are working towards NNLO matching and even N3LO!

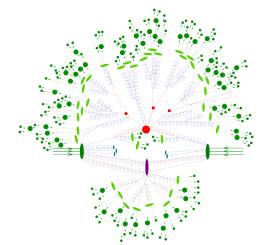
 \rightarrow Lot's of recent developments

Parton Showers naively only capture the leading soft and collinear behaviour correctly

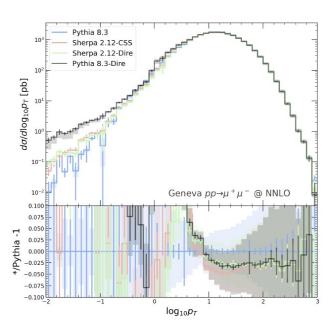
 \rightarrow We need to study next-to-leading power corrections!

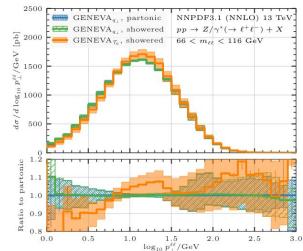
Systematic studies of subleading power effects in different kinematics mappings need to be conducted

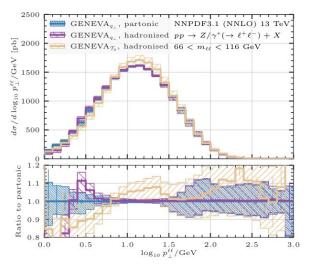
 \rightarrow Sadly, not much progress



(N)NNLO Matching Updates





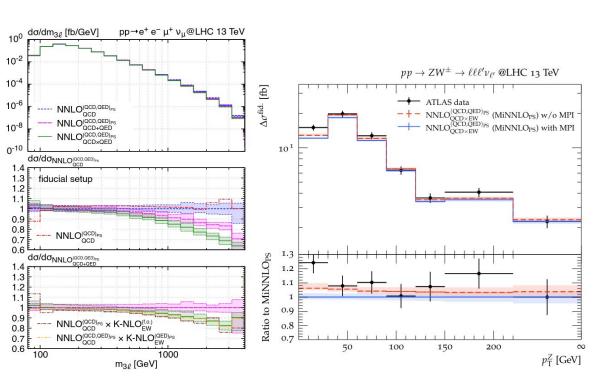


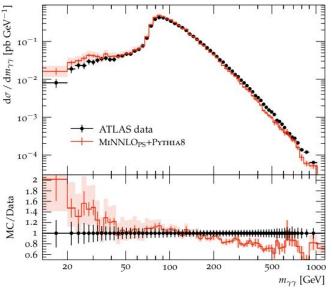
Geneva uses known resummation in jettiness/qT and matches to NNLO

[Aioli, Broggio, Gavardi, Kallweit, Lim, Nagar, Napoletano, Rottoli <u>2102.08390</u>]

Allows choice of resolution variable and assessment of shower scheme uncertainty

See Davide Napoletano's Talk at HP2





New results on di-photon production at NNLO [Galvari, Oleari, Re 2204.12602]

and WZ production at NNLO QCD/NLO EW using the MiNNLOPS

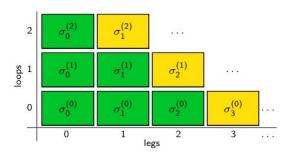
Method [Lindert, Lombardi, Wiesemann, Zanderighi, Zanoli <u>2208.12660</u>]

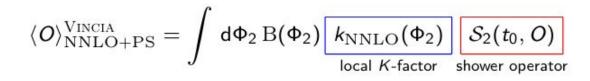
Work towards fully differential matching at NNLO in Vincia

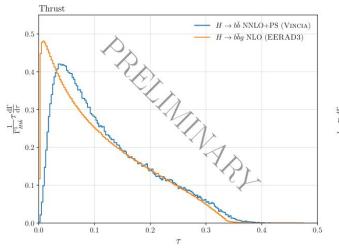
[Campbell, Höche, Li, Preuss, Skands 2108.07133]

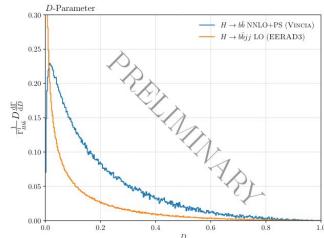
Shower matches NNLO singularity structure, "POWHEG @NNLO"

See Christian Preuss' Talk at HP2







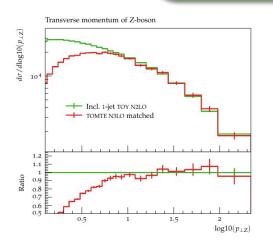


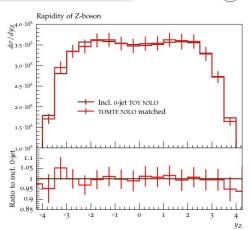
First N3LO parton shower matching:

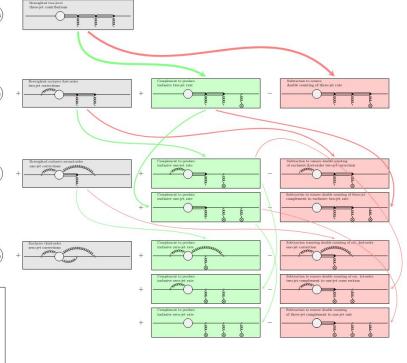
TOMTE

[Prestel <u>2106.03206</u>], [Bertone, Prestel <u>2202.01082</u>]

- Matching to inclusive results
- Extension of UN2LOPS

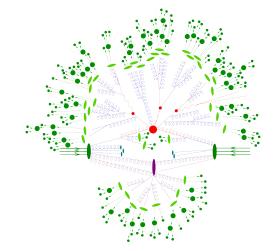






Shower precision not there yet, but we would like to use the best perturbative precision available

TOMTE can work with any parton shower!



NLL Parton Showers

Criteria for NLL accuracy at leading color outlined in:

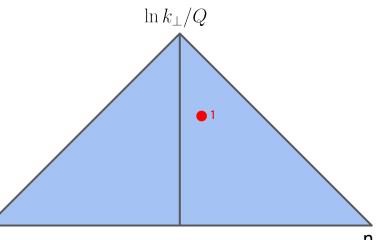
[Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez 2002.11114]

Where do the logarithms come from? (see also [Banfi, Salam, Zanderighi hep-ph/0407286])

Depends on logarithmic variables of emission pairs:

Energies/Angles	Distinctly different	Comparable
Distinctly different	LL	NLL
Comparable	NLL	NNLL

Shower needs to reproduce the correct tree-level ME squared in these regions



Criteria for NLL accuracy at leading color outlined in:

[Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez 2002.11114]

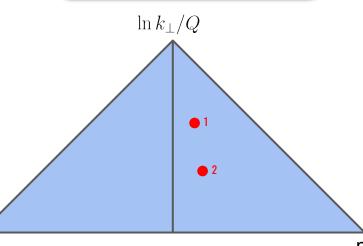
Where do the logarithms come from?

(see also [Banfi, Salam, Zanderighi hep-ph/0407286])

Depends on logarithmic variables of emission pairs:

Energies/Angles	Distinctly different	Comparable	
Distinctly different	LL	NLL	
Comparable	NLL	NNLL	

Shower needs to reproduce the correct tree-level ME squared in these regions



Criteria for NLL accuracy at leading color outlined in:

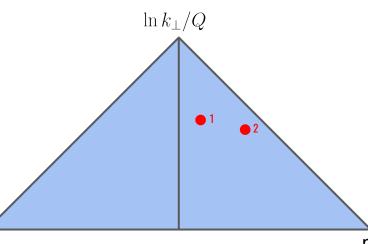
[Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez 2002.11114]

Where do the logarithms come from? (see also [Banfi, Salam, Zanderighi hep-ph/0407286])

Depends on logarithmic variables of emission pairs:

Energies/Angles	Distinctly different	Comparable
Distinctly different	LL	NLL
Comparable	NLL	NNLL

Shower needs to reproduce the correct tree-level ME squared in these regions



Criteria for NLL accuracy at leading color outlined in:

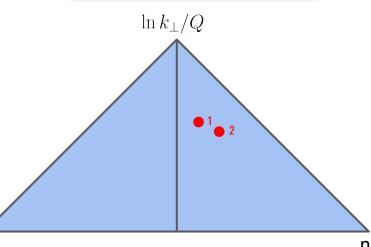
[Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez 2002.11114]

Where do the logarithms come from? (see also [Banfi, Salam, Zanderighi hep-ph/0407286])

Depends on logarithmic variables of emission pairs:

Energies/Angles	Distinctly different	Comparable	
Distinctly different	LL	NLL	
Comparable	NLL	NNLL	

Shower needs to reproduce the correct tree-level ME squared in these regions

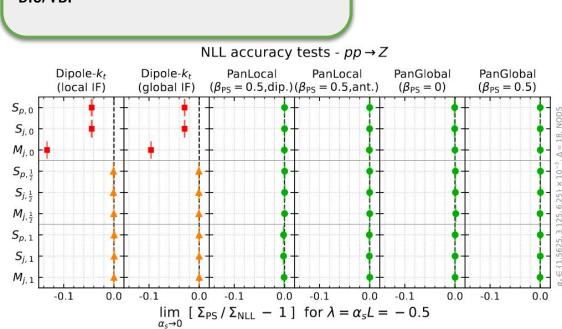


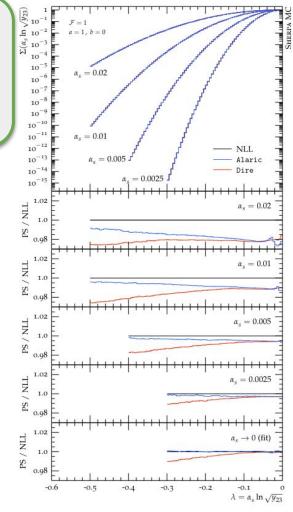
$$k = zp_{+} + 2\frac{|k_{\perp}^{2}|}{2zp_{+} \cdot p_{-}}p_{-} + k_{\perp}$$
 $t \sim |k_{\perp}^{2}|e^{-2\beta y}$

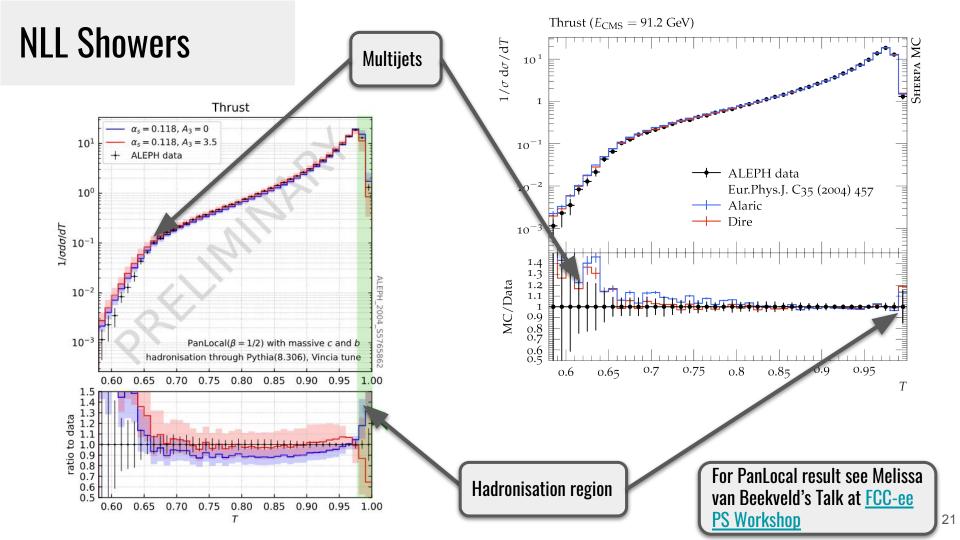
Project	Ordering	Recoil -	Recoil ⊥	Tests	Refs.
Herwig	Angle	Global	Local	Analytical for global observables, Phase space not covered in non-global case	[Marchesini, Webber <u>Nucl. Phys. B (1988),</u> <u>461</u>]
PanLocal	0 < β < 1	Local	Local	Numerical tests in e+ e-, pp (colour singlet), DIS	[Dasgupta et al. 2002.11114,]
PanGlobal	0 ≤ β < 1	Local	Global	for a variety of global and non-global observables	
Deductor	β = 1	Global	Local	Analytical and numerical for thrust	[Nagy, Soper <u>2011.04777</u>]
FHP	β = 0	Global	Global	Analytical and numerical for thrust, multiplicity	[Forshaw, Holguin, Plätzer <u>2003.06400</u>]
Alaric	β = 0	Global	Global	General, analytical proof for any global rIRC safe observable; Numerical tests for LEP event shapes and y ₂₃	[Herren et al. <u>2208.06057</u>]

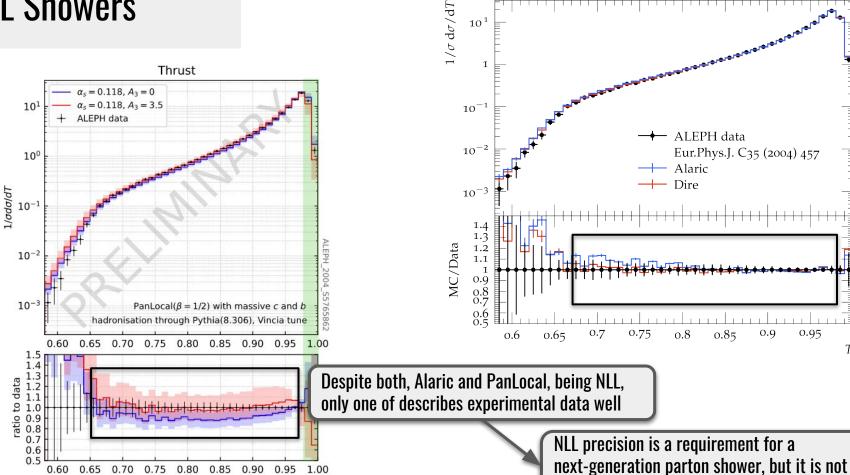
PanScales has demonstrated NLL accuracy for a wide range of observables in colour singlet production, e^+e^- -> Hadrons and recently DIS/VBF

For Alaric an analytic proof of NLL accuracy for global observables exists (both for IS and FS evolution) & numerical tests in e⁺ e⁻ -> Hadrons









Thrust ($E_{\text{CMS}} = 91.2 \text{ GeV}$)

sufficient

Massive Improvements

ALARIC has been extended to handle massive quarks as emitters [Assi, Höche 2307.00728]

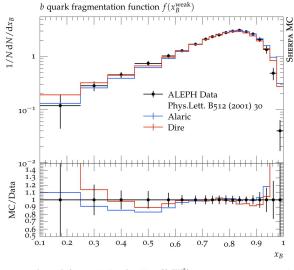
Number of important technical steps:

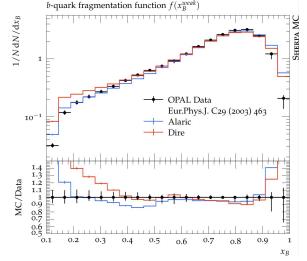
- Matching massive Eikonal to quasi-collinear limit
- Demonstrate NLL safety of momentum mappings
- Computation of all counterterms for MC@NLO matching

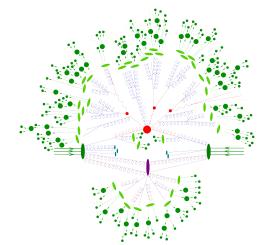
Important for phenomenology:

- Processes with top quarks
- b-jets
- b-hadron decays in Sherpa

Initial state evolution requires matching to PDFs and still WIP, but conceptually clear







Towards NLO/NNLL Parton Showers

At NLO, various effects have to be included correctly, avoiding any double counting:

- Iterated LO splittings
- Virtual corrections to splittings
- Genuine triple collinear splittings
- Genuine double soft emissions

$$D_{ji}^{(1)}(z,\mu) = -\frac{1}{\varepsilon} P_{ji}^{(0)}(z) \qquad \leftrightarrow \qquad \qquad \downarrow_{i} \qquad \downarrow_{j} \qquad \downarrow_{i} \qquad$$

At NLO, various effects have to be included correctly, avoiding any double counting:

- Iterated LO splittings
- Virtual corrections to splittings
- Genuine triple collinear splittings
- Genuine double soft emissions

Should go hand in hand with fully differential NNLO matching ("Parton Shower as NNLO subtraction scheme")

 \rightarrow Integrated counterterms need to be computed

$$D_{ji}^{(1)}(z,\mu) = -\frac{1}{\varepsilon} P_{ji}^{(0)}(z) \qquad \leftrightarrow \qquad \qquad \downarrow_{i} \qquad \downarrow_{j} \qquad \downarrow_{i} \qquad$$

At NLO, various effects have to be included correctly, avoiding any double counting:

- Iterated LO splittings
- Virtual corrections to splittings
- Genuine triple collinear splittings
- Genuine double soft emissions

$$D_{ji}^{(1)}(z,\mu) = -\frac{1}{\varepsilon} P_{ji}^{(0)}(z) \qquad \leftrightarrow \qquad \qquad \downarrow_{i} \qquad \downarrow_{j} \qquad \downarrow_{z} \qquad / \qquad \downarrow_{i} \qquad \downarrow_{$$

Should go hand in hand with fully differential NNLO matching ("Parton Shower as NNLO subtraction scheme")

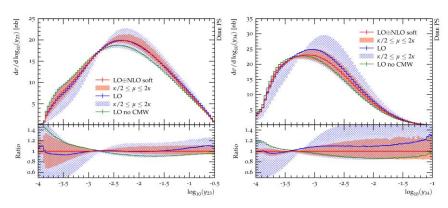
 \rightarrow Integrated counterterms need to be computed

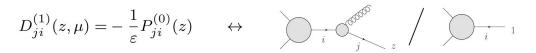
For double soft/triple collinear we need to learn from NNLO subtraction schemes

For ALARIC the work on the MC@NLO counterterms for massive particles allows for easy computation of NNLO counterterms in iterated limits [Assi, Höche 2307.00728]

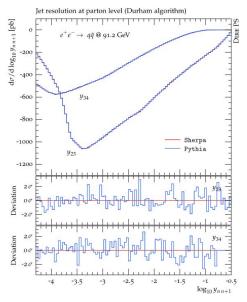
Studies of triple collinear and double soft effects in Dire:

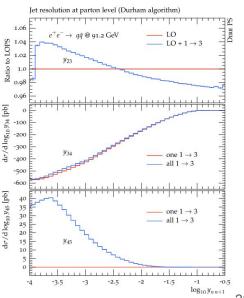
[Höche, Prestel <u>1705.00742</u>] [Dulat, Höche, Prestel <u>1805.03757</u>] [Gellersen, Höche, Prestel <u>2110.05964</u>]





$$D_{ji}^{(2)}(z,\mu) = -\frac{1}{2\varepsilon} P_{ji}^{(1)}(z) + \frac{\beta_0}{4\varepsilon^2} P_{ji}^{(0)}(z) + \frac{1}{2\varepsilon^2} \int_z^1 \frac{\mathrm{d}x}{x} P_{jk}^{(0)}(x) P_{ki}^{(0)}(z/x)$$





Work on higher order splittings on amplitude

level: [Löschner, Plätzer, Simpson-Dore 2112.14454]

NNLL studies to go beyond CMW coupling:

[Dasgupta, El-Menoufi <u>2109.07496</u>]

$$\begin{array}{c} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \\ \mathbf{P} \end{array} \simeq -\frac{g_s}{S_{ij}} \sqrt{\frac{z_i + z_j}{z_i}} \frac{\bar{u}_{\lambda_1}}{\sqrt{2n \cdot p_i}} \left(\not{k}_{\perp,i} \not{\epsilon}_{\lambda_3} \not{p}_i \right) \frac{u_{\lambda_2}}{\sqrt{2n \cdot p_i}}, \\ \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \end{array} \simeq 2 \frac{g_s}{S_{ij}} \frac{\sqrt{z_i (z_i + z_j)}}{z_j} \frac{\bar{u}_{\lambda_1}}{\sqrt{2n \cdot p_i}} \not{p}_i \frac{u_{\lambda_2}}{\sqrt{2n \cdot p_i}} k_{\perp,j} \cdot \epsilon_{\lambda_3}, \\ \stackrel{\mathbf{P}}{\longrightarrow} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \simeq -2 \frac{g_s}{S_{jk}} z_k \frac{\bar{u}_{\bar{\lambda}_1}}{\sqrt{2n \cdot p_k}} \left(\not{p}_k p_k \cdot \epsilon_{\bar{\lambda}_3} \right) \frac{u_{\bar{\lambda}_2}}{\sqrt{2n \cdot p_k}}, \\ \stackrel{\mathbf{P}}{\longrightarrow} \mathbf{P} \stackrel{\square}{\longrightarrow} \mathbf{P} \simeq 2 \frac{g_s}{S_{jk}} \frac{z_k}{z_j} \frac{n \cdot p_k}{n \cdot p_i} \frac{\bar{u}_{\bar{\lambda}_1}}{\sqrt{2n \cdot p_k}} \left(\not{p}_k k_{\perp,j} \cdot \epsilon_{\bar{\lambda}_3} \right) \frac{u_{\bar{\lambda}_2}}{\sqrt{2n \cdot p_k}}. \end{array}$$

$$\mathcal{B}_{2}^{q,(\mathrm{ab.})}(z) = \left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2}\sigma}{dzd\theta^{2}}\right)^{\mathrm{d-r}} - \left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2}\sigma}{dzd\theta^{2}}\right)^{\mathrm{s-o}} + \left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2}\sigma}{dzd\theta^{2}}\right)^{\mathrm{r-v}}$$

$$= \left(\frac{C_{F}\alpha_{s}}{2\pi}\right)^{2} \left(\frac{1+z^{2}}{1-z} \left(-3\ln z + 2\mathrm{Li}_{2}\left(\frac{z-1}{z}\right) - 2\ln z\ln(1-z)\right) - 1 + H^{\mathrm{fin.}}(z)\right).$$

$$(3.47)$$

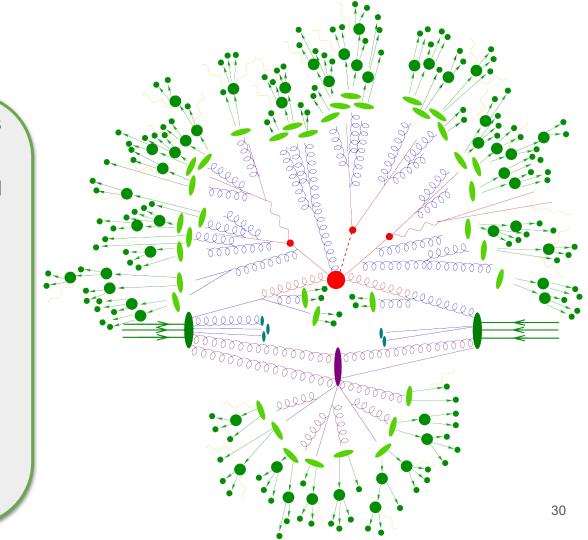
Conclusions

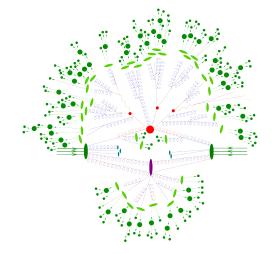
There have been a lot of exciting developments on parton showers in recent years!

- We are getting close to fully differential NNLO matching
- We are on a good way to understand Parton Showers at NLL

However, a lot of work remains:

- Showers at NLO are not quite there yet
- Massive quarks need to be included consistently, velocity logarithms, Quarkonia?
- NLP corrections might be necessary
- Can we do MC@NNLO?
- Most importantly: Implementation and Validation for use by experiments





Backup

Soft Radiation in Alaric

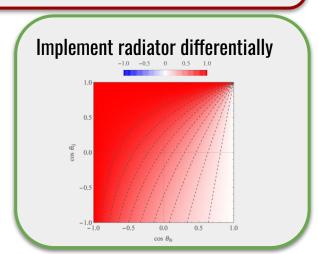
Factorisation in the soft limit:

$$_{n}\langle 1,\ldots,n|1,\ldots,n\rangle_{n} = -8\pi\alpha_{s} \sum_{\substack{i \ k\neq j}} _{n-1}\langle 1,\ldots,\dot{\chi},\ldots,n|\mathbf{T}_{i}\mathbf{T}_{k} w_{ik,j}|1,\ldots,\dot{\chi},\ldots,n\rangle_{n-1}$$

Multiplicative matching of singularities:

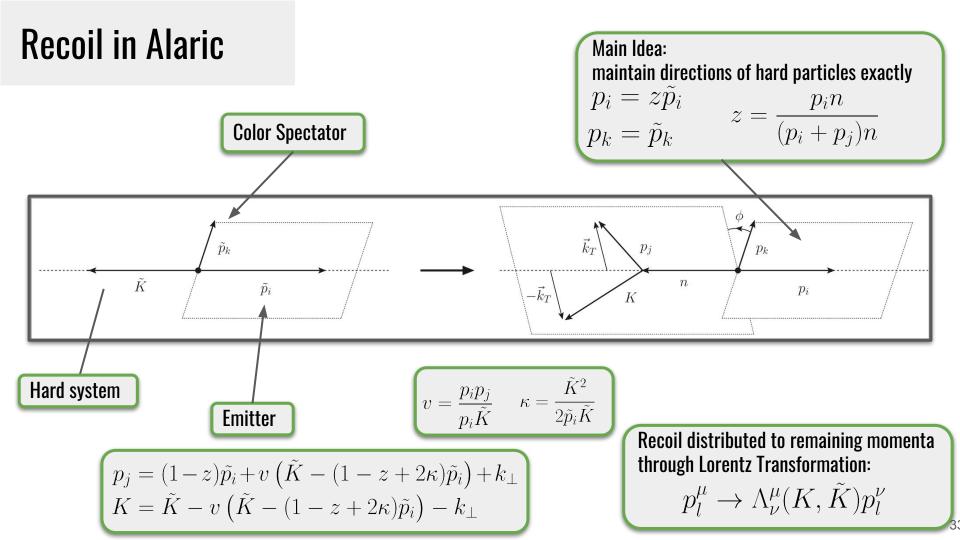
$$W_{ik,j} = \bar{W}_{ik,j}^i + \bar{W}_{ki,j}^k$$
$$\bar{W}_{ik,j}^i = W_{ik,j} \frac{1 - \cos \theta_{jk}}{2 - \cos \theta_{ij} - \cos \theta_{jk}}$$

[Catani, Seymour] hep-ph/9605323



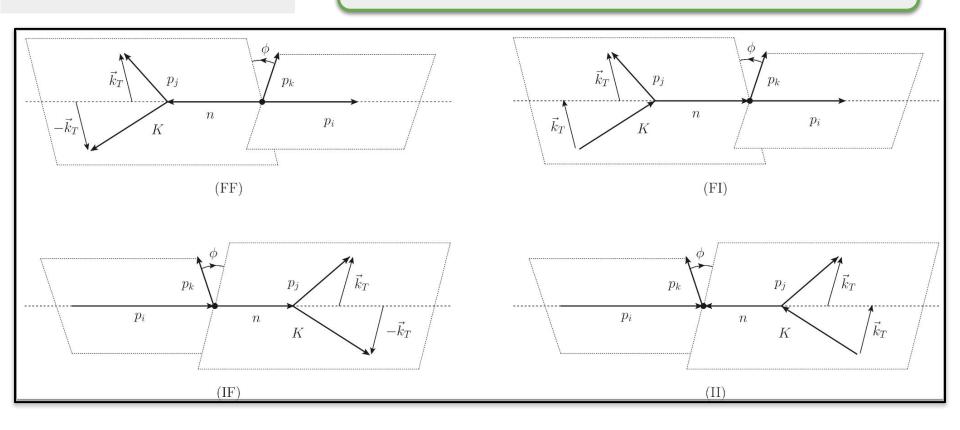
$$\frac{1}{2p_{i}p_{j}}P_{(ij)i}(z) \to \frac{1}{2p_{i}p_{j}}P_{(ij)i}(z) + \delta_{(ij)i}\left[\frac{\bar{W}_{ik,j}^{i}}{E_{j}^{2}} - w_{ik,j}^{(\text{coll})}(z)\right]$$

Splitting functions depend on direction of color spectator! N.b.: only leading color



Recoil in Alaric

Momentum mapping works for initial and final state emitters/spectator \rightarrow e+ e-, pp, DIS, ... all treated on same footing



NLL Proof for Alaric

Recoil distributed to remaining momenta through Lorentz Transformation:

$$p_l^{\mu} \to \Lambda_{\nu}^{\mu}(K, \tilde{K}) p_l^{\nu}$$

Suppressed by $\mathcal{O}(k_{\perp}/K)$

$$\Lambda^{\mu}_{\nu} \approx g^{\mu}_{\nu} + \frac{K_{\rho} X_{\sigma}}{K^2} T^{\mu\rho\sigma}_{\nu} + \mathcal{O}(k^2_{\perp})$$

$$\begin{split} X^{\mu} &= p_{j}^{\mu} - (1-z)\,\tilde{p}_{i}^{\mu} \\ &= v\big(\tilde{K}^{\mu} - (1-z+2\kappa)\,\tilde{p}_{i}^{\mu}\big) + k_{\perp}^{\mu} \end{split}$$

$$\Lambda^{\mu}_{\nu}(K,\tilde{K}) = g^{\mu}_{\nu} + \tilde{K}^{\mu}A_{\nu} + X^{\mu}B_{\nu}$$

$$\Lambda^{\mu}_{\nu}(K, \tilde{K}) = g^{\mu}_{\nu} + \tilde{K}^{\mu}A_{\nu} + X^{\mu}B_{\nu}$$

$$A^{\nu} = 2\left[\frac{(\tilde{K} - X)^{\nu}}{(\tilde{K} - X)^{2}} - \frac{(\tilde{K} - X/2)^{\nu}}{(\tilde{K} - X/2)^{2}}\right] \quad B^{\nu} = \frac{(\tilde{K} - X/2)^{\nu}}{(\tilde{K} - X/2)^{2}}$$

NLL Proof for Alaric

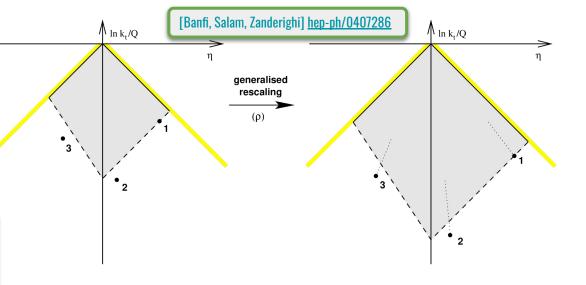
For one emission kinematic variables in the Lund plane scale like:

$$k_{t,l} \to k'_{t,l} = k_{t,l} \rho^{(1-\xi_l)/a+\xi_l/(a+b)}$$

$$\eta_l \to \eta'_l = \eta - \xi_l \frac{\ln \rho}{a+b}$$

$$\xi_l = \frac{\eta_l}{\eta_{l,\text{max}}}$$

where a = 1 and b = 0 for Alaric



Working in the rest frame of the color dipole, the other momenta scale like:

$$\begin{split} \tilde{p}_l^0 &\sim \ \rho^{1-\xi_l} \\ \tilde{p}_l^{1,2} &\sim \ \rho \\ \tilde{p}_l^3 &\sim \ \rho^{1-\xi_l} \\ \text{for } \rho &\rightarrow 0 \end{split}$$

NLL Proof for Alaric

 $\int_{\ln k_t/Q}$ $\int \ln k_t/Q$ generalised rescaling (p) Scaling under an additional emission is determined by

[Banfi, Salam, Zanderighi] hep-ph/0407286

the Lorentz transformation in the limit
$$ho o 0$$
:
$$\Delta p_l^\mu = 2\,\frac{\tilde K X}{\tilde \nu^2}\,\frac{\tilde p_l \tilde K}{\tilde \nu^2}\,\tilde K^\mu - \frac{\tilde p_l X}{\tilde \nu^2}\,\tilde K^\mu + \frac{\tilde p_l \tilde K}{\tilde \nu^2}\,X^\mu$$

$$\begin{array}{lll} \text{Scaling becomes:} & & \\ \Delta p_l^0 \sim & \rho^{1-\xi_l} X^0 + \rho^{2-\xi_l - \max(\xi_i, \xi_j)} \tilde{K}^0 + \rho^{1-\xi_l} X^0 \\ \Delta p_l^{1,2} \sim & \rho^{1-\xi_l} X^{1,2} \sim \rho^{2-\xi_l} \\ \Delta p_l^3 \sim & \rho^{1-\xi_l} X^3 \sim \rho^{2-\xi_l - \max(\xi_i, \xi_j)} \end{array} \qquad \begin{array}{ll} \tilde{p}_l^0 \sim & \rho^{1-\xi_l} \\ \tilde{p}_l^{1,2} \sim & \rho \\ \tilde{p}_l^3 \sim & \rho^{1-\xi_l} \end{array}$$