Fermilab **ENERGY** Office of Science

Image credit: Marguerite Tonjes

Higgs-charm couplings

Nick Smith, on behalf of ATLAS+CMS SM@LHC 2023 12 July, 2023

Outline

- Indirect methods
 - Higgs Combination
 - p_T differential
- Direct searches
 - Rare decays
 - VH(cc)
 - ggH(cc)
 - VH(cc) enters combinations
- Outlook for κ_c

- Assume $|\kappa_V| \le 1 \Rightarrow$ 95% CL upper limit on branching ratio of undetected decays
 - CMS: ~0.18
 - ATLAS: 0.12

- Assume $|\kappa_V| \le 1 \Rightarrow$ 95% CL upper limit on branching ratio of undetected decays
 - CMS: ~0.18
 - ATLAS: 0.12

- Assume $|\kappa_V| \leq 1$ -> 95% CL upper limit on branching ratio of undetected decays
 - CMS: ~0.18
 - ATLAS: 0.12

• Back of envelope: assume $B_{u.}$ is excess H(cc), other $\kappa \approx 1$, $B_{undet} = \frac{(\kappa_c^2 - 1)B_{cc}^{SM}}{1 + (\kappa_c^2 - 1)B_{cc}^{SM}}$ - Implies $\kappa_c \leq 2.4$

- Assume $|\kappa_V| \leq 1$ -> 95% CL upper limit on branching ratio of undetected decays
 - CMS: ~0.18
 - ATLAS: 0.12
- Back of envelope: assume $B_{u.}$ is excess H(cc), other $\kappa \approx 1$, $B_{undet} = \frac{(\kappa_c^2 - 1)B_{cc}^{SM}}{1 + (\kappa_c^2 - 1)B_{cc}^{SM}}$ - Implies $\kappa_c \leq 2.4$
- Better: fit with full κ_c dependence,

$$|\kappa_V| \le 1, B_{undet} = 0$$

- Or include direct $\Gamma_{\!H}$ constraint (as seen in Ulascan's talk)
 - Bound is ~2x weaker (<u>1905.09360</u>)

Charm coupling distorts the loop

- Higgs p_T measurements can separate c/b contributions to ggH production loop <u>1606.09253</u>
- ATLAS probed this effect w/full Run-II $H(\gamma\gamma) + H(ZZ^*)$ combination
 - Left: allow couplings to modify total cross section
 - Right: differential shape only
 - Both assume all other $\kappa = 1$

ATLAS JHEP 05 (2023) 028

(CMS partial Run-II: Phys. Lett. B 792 (2019) 369)

g 00000

t/b/c

t/b/c

t/b/c

Higgs to γ +meson

- $H \rightarrow J/\psi \gamma$ decays can probe κ_c
 - SM expected cross section: 3×10^{-6}
 - Contribution from direct H(cc) coupling is sub-leading, hence mild κ_c dependence

Higgs to γ +meson

- Both ATLAS & CMS probe several exclusive final states, in particular:
 - ATLAS: $B(H \to J/\psi \gamma) < 3.5 (3.0) \times 10^{-4}$ (Phys. Lett. B 786 (2018) 134)
 - CMS: $B(H \to J/\psi \gamma) < 7.6 (5.2) \times 10^{-4}$ (Eur. Phys. J. C 79 (2019) 94)
 - Corresponds to ~120 times SM expectation

Probing κ_c via the initial state

- WWγ tri-boson with H(WW)γ interpretation (<u>SMP-22-006</u>)
 - Main analysis: SM WWy observation, dim-8 QGC limits
 - Selection modified to target H(WW) decay ($\Delta \phi_{\ell\ell}$, etc.)
 - Assume other Higgs κ scale to preserve measured BR

Process	σ_{up} pb exp.(obs.)	Yukawa couplings limits exp.(obs.)	~ .
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \leq 13000 \ (16000)$	$q \longrightarrow h$
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq$ 14000 (17000)	
$s \overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300 \ (1700)$	\bar{a}
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{c} \leq 110(200)$	4

Probing κ_c via the initial state

- WWγ tri-boson with H(WW)γ interpretation (<u>SMP-22-006</u>)
 - Main analysis: SM WWy observation, dim-8 QGC limits
 - Selection modified to target H(WW) decay ($\Delta \phi_{\ell\ell}$, etc.)
 - Assume other Higgs κ scale to preserve measured BR

Process	$\sigma_{\rm up}$ pb exp.(obs.)	Yukawa couplings limits exp.(obs.)	~ .
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \le 13000 \ (16000)$	q h
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq$ 14000 (17000)	
$s \overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300 \ (1700)$	\bar{a}
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \leq 110(200)$	4 0000007

- Higgs+charm
 - Proposed in <u>1507.02916</u>, expect $|\kappa_c| < 2.6$ (95% CL) with 3/ab HL-LHC data
 - Aside: parton tagging for x+1j EFT searches?

Higgs to cc via jet flavor

- Direct measurement requires:
 - Sharp mass peak with well-understood efficiency
 - Over well-suppressed & well-understood background

Higgs to cc via jet flavor

- Direct measurement requires:
 - Sharp mass peak with well-understood efficiency
 - Over well-suppressed & well-understood background
- Long history of developments for H(bb) largely translate
 - Challenge: mis-tag from two directions

🚰 Fermilab

Displaced

secondary

b-hadron

vertices

Charm flavor tagging advances

- As usual, lower-level features + inductive bias = gain
 - DeepCSV: MLP on ~70 expert variables (JINST 13 (2018) P05011)
 - DeepJet: CNN+RNN+MLP on ~600 low-level observables (JINST 15 (2020) P12012)
- ATLAS has NNs too (with less cool names)
 - MV2 (BDT) for b-tag veto, DL1 (MLP) for charm-tag (ATL-PHYS-PUB-2017-013)

Double charm tagging rationale

- Whole large-R jet tagger wins over sub-jet tag JINST 13 (2018) P05011
- Downside: cannot calibrate using top tag & probe
 - Instead through gluon splitting proxy jet

- Big gains with more complex DNN
 - SOTA graph networks

- Big gains with more complex DNN
 - SOTA graph networks

 $\int_{j_{i2}}^{X}$

EdgeConv

X, 0,

X_{ji4}

 $\mathbf{x} \mathbf{e}_{ij_{i3}}$

- Big gains with more complex DNN
 - SOTA graph networks

 10°

QCD misidentification probability

10⁻³

0.1

coordinates

features

- Big gains with more complex DNN
 - SOTA graph networks transformers

PMLR 162:18281-18292, 2022

	All classes		$H \to b \bar{b}$	$H \to c \bar c$
	Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$
PFN	0.772	0.9714	2924	841
P-CNN	0.809	0.9789	4890	1276
ParticleNet	0.844	0.9849	7634	2475
ParT	0.861	0.9877	10638	4149
ParT (plain)	0.849	0.9859	9569	2911

	Model complexity		
	Accuracy	# params	FLOPs
PFN	0.772	86.1 k	4.62 M
P-CNN	0.809	354 k	15.5 M
ParticleNet	0.844	370 k	540 M
ParT	0.861	2.14 M	340 M
ParT (plain)	0.849	2.13 M	260 M

Computation cost still under control.

Single-charm jet calibration

- CMS: calibrate via template fit to $W + c, t\bar{t}, Z + jets$ topologies
 - ATLAS: top only

Selection Jet yield с % b % udsg % W+c 362 002 92.9 0.957 6.14 tĪ 6.91 380 366 12.1 81.0 DY + jet8 509 206 8.87 5.05 86.1

JINST 17 (2022) P03014

- Calibrated performance degrades, SF 0.9-1 \pm 2-5%
 - Aside: 2017 > 2016 due to CMS Phase-I pixel upgrade

Double-charm jet calibration

- Gluon-splitting proxy jet sample obtained via
 - Soft muon selection (low- p_T muon in each subjet)
 - sfBDT (trained on parton-level gluon energy fraction)
- Template fit to 3 components in leading SV mass
- Typical uncertainty ~30%
 - Dominant systematic for VH(cc), ggH(cc)

🚰 Fermilab

Applying charm tagging in VH topology

- Analysis strategy very much like VH(bb)
 - Tag V boson in lepton multiplicity categories
 - Use DNN to tag c jets, improve mass resolution
 - Multi-region fit to constrain V+jets background
- For CMS, split analysis into resolved + boosted
 - Boosted: anti- k_T R=1.5 jet with $p_T > 300$ GeV exists

Jet mass resolution

- For resolved jets, challenge is energy resolution & FSR recovery
 - ATLAS: muon recovery (topoclusters)
 - For 2ℓ channel, can use kinematic fit as well
- For boosted jets, challenge is ISR, underlying event, and pileup
 - Historically handled via soft-drop grooming
 - Soft-drop can send mass to zero; instead train ParticleNet regression on PF candidates

Dealing with V+jets

- For all analyses, control regions (CRs) are formed via kinematic sidebands
 - Resolved: sideband in $\Delta R(j,j)$ or m_{jj}
 - Boosted: kinematic BDT (only jet + leptons)
- CRs further split by flavor tagger inversions
 - Independent normalization+shape uncertainties for light, c, and b flavor, varied definitions ATLAS/CMS
- Common theme: free parameters in fit necessary, even when using NLO QCD V+jets samples
 - ATLAS: 2-point Sherpa/FxFx modeling uncertainty
 - MC statistics also challenging

1	Z + jets	
ď	Z + hf normalisation	Floating
2	Z + mf normalisation	Floating
	Z + lf normalisation	Floating
2	Z + bb to $Z + cc$ ratio	20%
	Z + bl to $Z + cl$ ratio	18%
מ	Z + bc to $Z + cl$ ratio	6%
Ð	$p_{\rm T}^V$ acceptance	1%-8%
Ő	N_{jet} acceptance	10%-37%
Б	High- ΔR CR to SR	12%-37%
0	0- to 2-lepton ratio	4%-5%
Ŭ	W+ jets	
E	W+hf normalisation	Floating
2	W+mf normalisation	Floating
Ŋ	W+lf normalisation	Floating
	W+bb to $W+cc$ ratio	4%-10%
	W+bl to $W+cl$ ratio	31%-32%
1	W+bc to $W+cl$ ratio	31%-33%
Ξ	$W \rightarrow \tau \nu(+c)$ to $W+cl$ ratio	11%
2	$W \rightarrow \tau \nu (+b)$ to $W + cl$ ratio	27%
	$W \rightarrow \tau \nu (+l)$ to $W+l$ ratio	8%
9	N_{jet} acceptance	8%-14%
Ð	High- ΔR CR to SR	15%-29%
X	$W \rightarrow \tau \nu$ SR to high- ΔR CR ratio	5%-18%
Ц	0- to 1-lepton ratio	1%-6%

Standard candles

VH(cc) results

- CMS/ATLAS comparison in resolved result is difficult
 - Competition with merged jet for phase space
- Uncertainty budget: statistical ~ systematic
 - Leading systematic: Z+jets modeling (ATLAS); MC stat (CMS resolved); c-tag efficiency (CMS boosted)

VH(cc) results

- Translation to κ_c constraint assuming other $\kappa=1$ $\mu_{VH(cc)} = \frac{\kappa_c^2}{1 + B_{cc}^{SM}(\kappa_c^2 - 1)}$

6

lκ_cl

Boosted ggH(cc)

- CMS has probed ggH(cc) with full Run II data
- Event selection:

22

12 July 2023

- One AK8 DeepDoubleX cc-tagged jet
- No leptons, b-tag veto
- Large QCD background suppressed by 10⁻³, accurately modeled via CR + sideband constraint ("differential alphabet")

Nick Smith I Higgs-charm couplings

辈 Fermilab

2211.14181 (acc. PRL)

Boosted ggH(cc)

400

- Double charm tagger calibration validated using Z(cc)
 - Observation of Z(cc)+jets!
- ggH(cc) upper limit: 47 (39) x SM
 - Leading uncertainty is statistical

Fat Set (At

Combinations

- ATLAS VH(bb)+VH(cc) combination provides complementary constraints to Higgs p_T differential measurement: combine them!
 - Removing VH(cc) degrades κ_c constraint 10% for $B_{BSM} = 0$ (2x for floating BSM)

Summary & Outlook

- A large amount of progress towards κ_c in the last few years
- Indirect searches become more precise w/ \sqrt{L}
- Direct searches see large gains with novel experimental techniques
 - cc-tagging as good now as bb-tagging was 3 years ago!
- Statistical uncertainty still significant in all searches—we will gain much from HL-LHC

Thanks for your attention!

Backup

CMS kappa fit

• Without invisible/undetected component

Other γ + meson decays

• Υ may be more interesting

- <u>Phys. Lett. B 786 (2018) 134</u>

Branching fraction limit $(95\% \text{ CL})$	Expected	Observed
$\mathcal{B}\left(H \to J/\psi\gamma\right)\left[\ 10^{-4}\ \right]$	$3.0^{+1.4}_{-0.8}$	3.5
$\mathcal{B}\left(H \to \psi\left(2S\right) \gamma\right) \left[10^{-4} \right]$	$15.6_{-4.4}^{+7.7}$	19.8
$\mathcal{B}\left(Z \to J/\psi \gamma\right) \left[\ 10^{-6} \ \right]$	$1.1_{-0.3}^{+0.5}$	2.3
$\mathcal{B}\left(Z \to \psi\left(2S\right) \gamma\right) \left[\ 10^{-6} \ \right]$	$6.0^{+2.7}_{-1.7}$	4.5
$\mathcal{B}\left(H \to \Upsilon(1S) \gamma\right) \left[\ 10^{-4} \ \right]$	$5.0^{+2.4}_{-1.4}$	4.9
$\mathcal{B}(H \to \Upsilon(2S) \gamma) [\ 10^{-4}]$	$6.2^{+3.0}_{-1.7}$	5.9
$\mathcal{B}\left(H \to \Upsilon(3S)\gamma\right)\left[\;10^{-4}\;\right]$	$5.0^{+2.5}_{-1.4}$	5.7
$\mathcal{B}\left(Z \to \Upsilon(1S)\gamma\right) \left[\ 10^{-6} \ \right]$	$2.8^{+1.2}_{-0.8}$	2.8
$\mathcal{B}\left(Z \to \Upsilon(2S) \gamma\right) \left[\ 10^{-6} \ \right]$	$3.8^{+1.6}_{-1.1}$	1.7
$\mathcal{B}\left(Z \to \Upsilon(3S) \gamma\right) \left[\ 10^{-6} \ \right]$	$3.0^{+1.3}_{-0.8}$	4.8

ATLAS single-charm tagging

- Charm calibration gives mild reduction in efficiency
- At 27% c-tag, 1% b-mistag:
 - light-mistag $0.2\% \approx CMS$

0.6

0.55

0.45F

0.4

0.35

ATLAS

c-jets

√s= 13 TeV, 80.5 fb⁻¹

DL1_c c-tag + MV2 b-tag veto

 $0.5 \vdash$ VH, H \rightarrow cc 27% c-tagging efficiency working point

Data efficiency

MC efficiency

Total uncertainty

c-tagging efficiency

Single-charm calibration region definitions

- W+c
 - Leptonic W decay, tag charm jet with soft muon
- **T**op
 - B jet from top decay with soft muon; semi-leptonic and dilepton decays; >4 jets
- DY+jet
 - Dilepton (ee/mm); no soft muon in jet requirement

JINST 17 (2022) P03014

Single-charm calibration

 Significant improvement in tagger response modeling

🛟 Fermilab

JINST 17 (2022) P03014

Double-charm jet mass decorrelation

‡ Fermilab

Double-charm proxy jets with sfBDT

🛟 Fermilab

<u>CMS-DP-2022-005</u>