Higgs Self-Coupling Measurements

SM@LHC@FNAL

Maximilian Swiatlowski, On behalf of ATLAS TRIUMF

(Organizational Note)

- First, my apologies
- This talk was intended to also include CMS results, but due to organizational complications the speaker invitation went out extremely late
- I was not able to include the excellent CMS results on this topic (or attend the conference): my apologies
- Please check these great results at your leisure!
 - Thankfully, <u>Daniel</u> provided a great overview already yesterday!
 - Especially check out the great boosted 4b result he highlights
 - See also Ana's talk on EFT's: many relevant results in that talk
- And many thanks to Pier Paolo for the introduction!

The Higgs Potential

We have no knowledge of the actual shape: just some of its properties

Why does this matter?

M. Swiatlowski (TRIUMF)

Why Measure the Potential?

Many models alter the Higgs potential

Models of "electroweak baryogenesis" have the Higgs potential undergo a phase transition, which could explain matter-antimatter asymmetry

This phase transition requires modifications to the SM potential! And generically: it's hard to alter only the potential, and not change any other Higgs couplings!

If we can measure the shape of the potential, we can find hints of fundamental, critical new physics!

How to Measure the Potential The SM Higgs potential is: $V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$ Expand around the minimum, get: $V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \dots$ = v = 246 GeV $= V_0 + \frac{1}{2}m_H^2 h^2 + \frac{m_h^2}{2n^2}vh^3 + \dots$ 8 (0000000 κ_t t/b This is the mass: 8 66666666 well measured This term is the Higgs self-coupling λ^{SM}_{HHH} The SM predicts di-Higgs production This higher-order term tells us more κ_λ about the shape of the potential!

Self-Coupling with Di-Higgs

This coupling is what we want to measure This tells us about the shape of the Higgs potential

This process has the same final state, but κ_{λ} doesn't appear: no information about the Higgs potential

These two processes destructively interfere in the SM, leading to **very low cross section**

Also important: κ_{λ} always appears with κ_t : sensitivity can change if κ_t allowed to float

Measuring with Di-liggs

If κ_{λ} isn't the SM value interference diminishes: larger cross section!

But while the cross section can increase, the **lowest** m_{HH} **component** is what is most enhanced

Measuring κ_{λ} is challenging: need both rate and shape information for best constraints

 $HH \rightarrow bb\gamma\gamma$

Trigger on diphotons $(E_T > 35,25 \text{ GeV})$

Cleanest signature possible: low signal rate, but low bkgds too!

Require two photons

(Leading (subleading) $p_T/m_{\gamma\gamma} > 0.35 (0.25)$)

Phys. Rev. D 106 (2022) 052001

Require 2 b-tagged jets $(\epsilon = 77\%)$

by Analysis Strategy

bbyy Background Estimate

Background estimate formed on fit to $m_{\gamma\gamma}$ in different signal regions

Shape of background from MC, normalization determined from data

4

2

0

110

120

130

Look for a peak in the $m_{\gamma\gamma}$ spectrum near the Higgs

No obvious signs of new physics

Similar results for other signal categories

150

 $m_{\gamma\gamma}$ [GeV]

160

140

$HH \to b\bar{b}\tau\bar{\tau}$

Separate into $au_h au_h$ and $au_\ell au_h$ channels

Trigger on di- τ , $\ell + \tau$, or single ℓ

Require I or 2 'loose' τ : $m_{\tau\tau} > 60 \text{ GeV}$

Balanced signature: τ_h allows for good bkgd suppression

Require 2 b-tagged jets $(\epsilon = 77\%)$

bbττ Background Estimate

Top-quark background from MC, normalization floating in final fit

Z+jets background from MC, normalization from leptonic CR

Fake au estimated from data using "fake factor" method

$b\bar{b}\tau\bar{\tau}$ Strategy and Results \sim

Fits to BDT/NN distribution used for final analysis

Data agrees well with background prediction

 $au_{had} au_{had}$ has strongest sensitivity, but au_{lep} channels also contribute Extremely challenging signature: Large signal, but large backgrounds, And difficult to simulate!

<u>arXiv:2301.03212</u>

Combination of 6 b-jet triggers

4 b-tagged jets $(\epsilon = 77 \%, p_T > 40 \text{ GeV})$

Pair "closest jets" to form Higgs candidates

Triggering on *b*-jets

Multi-jet background rates are **huge**: Utilize *b*-tagging in the trigger to manage the rates!

Fast *b*-tagging is enormously complicated: huge optimization game for speed and performance

Enables efficient recording of 4 jets with $p_T > 45$ GeV, and only 2 b-tags online

M. Swiatlowski (TRIUMF)

bbbb Analysis Strategy

Reconstruct Higgs candidates, form "mass plane"

Center is signal-like; outer regions used for background and background validation

bbbb Background

Systematic Uncertainties

Many usual types of uncertainties (alternate regions, etc.)

But *statistical* uncertainties play an important role as well: bkgd estimate NN very sensitive to fluctuations in training

300

1.0

0.5

Events / 25 GeV Post-Fit Background ATLAS 500 $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ Stat. + Syst. Error ggF Signal Region 4b Data 400 |Δη_{HH}| < 0.5, X_{HH} < 0.95 400 x SM HH 300 $200 \times \kappa_{\lambda} = 6 HH$ 200 100 0 1.5 Data/Pred

600

700

500

400

Large range of signal regions defined

Cover various kinematic, production regions

No excess observed

July 12, 2023

800

900

1000

m_{HH} [GeV]

bbbb Results

bb WW 99

 $\tau \tau$

S NT

bb

gg

 $\tau \tau$

CC

ZZ

γγ

Zγ

μμ

WW

higgs 2 decay

Combination

ZZ

γγ

CC

higgs I decay

Zγ

μμ

For optimal sensitivity: combine all three analyses into a single statistical interpretation

No single analysis powerful enough to measure these processes on its own!

July 12, 2023

processes on its ow

Phys. Lett. B 843 (2023

10⁻⁷

10⁻⁸

Measuring the Potential

Here, show likelihood vs κ_{λ}

Minimum here is the "best fit" 95% C.L. range is the "limit"

Each of the three analyses contributes to the combination

 $-0.6 \le \kappa_{\lambda} < 6.6$ is the allowed range: starting to probe EWBG!

Other Couplings

Via dedicated vector-boson fusion channels, can also measure the VVHH coupling

Measuring with Single Higgs

Single Higgs final states can also be sensitive to κ_{λ}

NLO EW corrections give Higgs cross-section, branching ratios, and kinematics dependence on κ_{λ}

Combining Single and Double

Channel	Integrated luminosity [fb ⁻¹]	Ref.
$HH \rightarrow b\bar{b}\gamma\gamma$	139	[17]
$HH \rightarrow b \bar{b} \tau^+ \tau^-$	139	[18]
$HH \rightarrow b\bar{b}b\bar{b}$	126	[19]
$H \rightarrow \gamma \gamma$	139	[58]
$H \to ZZ^* \to 4\ell$	139	[59]
$H \rightarrow \tau^+ \tau^-$	139	[60]
$H \rightarrow WW^* \rightarrow e \nu \mu \nu \text{ (ggF,VBF)}$	139	[<mark>61</mark>]
$H \rightarrow b\bar{b}$ (VH)	139	[62]
$H \rightarrow b\bar{b}$ (VBF)	126	[63]
$H \rightarrow b\bar{b} ~(t\bar{t}H)$	139	[64]

Can perform a combined analysis, using single and double Higgs!

Single Higgs analysis use STXS template fits for VBF and VH measurements

Explicit checks for overlap: remove $t\bar{t}H \rightarrow \gamma\gamma$ due to $b\bar{b}\gamma\gamma$ overlap

Perform two types of interpretations:

I. New physics only in κ_{λ} 2. New physics in any κ coupling

Results: κ_{λ}

Expected

Di-Higgs provides stronger limits, but **Single-Higgs** helps!

Combination provides strongest limits

Generic interpretation allows other K values to float: Would be dramatically worse without Single Higgs!

Relaxing Constraints

Di-Higgs measurements cannot simultaneously constrain κ_{λ} and κ_{t} **Single Higgs** allows the **Combinations** to be sensitive to variations in both parameters

Conclusions

ATLAS has performed a unique, new measurement combining single and di-Higgs final states to measure the Higgs self-coupling

With more physics constraints, we can relax the model assumptions and test more 'realistic' deviations from the SM

This combination provides the **most precise**, and **most general**, constraints on the Higgs self-coupling

Thank You!

More on Single Higgs

More on Single Higgs

More on Combination

Generalized Limits on κ_{λ}

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_\lambda < 6.1$	$-2.2 < \kappa_\lambda < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$