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• BSM benchmark model: 2HDM type-I

• Two Higgs doublets → CP-even ℎ!, ℎ" (and 𝐴,𝐻±)
• tan𝛽: ratio of vevs
• 𝛼: mixing angle
• 𝑚$! < 𝑚$"	

• Scaling of vector boson couplings

𝑐 ℎ!𝑉𝑉 ∝ sin(𝛽 − 𝛼)
𝑐 ℎ"𝑉𝑉 ∝ cos(𝛽 − 𝛼)

→ Measurements enforce approximate alignment of  
     the SM-like Higgs with the electroweak vacuum. [ATLAS-CONF-2020-027]
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• Also loop effects can be important as evident in the di-
photon decay channel.

• Charged Higgs yields sizeable contribution:

⇒ Lower di-photon signal rate predicted if heavier CP-even
     Higgs	𝐻 is ℎ!"%

Higgs potential parameter. 
Pert. unitarity enforces 𝑚!!

" ∼ 𝑚#±
" ∼ %𝑚"

Loop suppression: 𝑣!/𝑚"±
!

Coupling:
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• Important interplay between Higgs precision 
measurements and direct searches for BSM 
particles.

• BSM searches:
a) CMS: 𝑝𝑝 → 𝜙 → ℎ!"%ℎ!"%
b) CMS: 𝑝𝑝 → 𝜙! → ℎ!"%𝜙" → 𝑏𝑏𝜏𝜏
c) CMS: 𝑝𝑝 → 𝜙 → 𝑍ℎ!"%
d) ATLAS: 𝑝𝑝 → 𝜙 → 𝑊𝑊,𝑍𝑍,𝑊𝑍

• Deviations from cos 𝛽 − 𝛼 = 0 due to 𝑡 ̅𝑡𝐻 
measurements affected by 𝑡 ̅𝑡𝑊	theory unc. 

 ⇒ Experimentally precision should be met by   
          theoretical precision.

[HB et al. 2210.09332]
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Future collider? Not yet, but soonFuture collider?

• Established existence of 3rd generation Yukawas.
• Also first evidence for 2nd generation muon 

coupling.
• Constraining the other Yukawa couplings to their 

SM values will be difficult even in the future.

Ideas?Ideas?

→	Dedicated charm session on Wednesday!
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• While CP structure of 𝐻𝑉𝑉 interactions is already comparably 
well-constrained, the CP structure of the 𝐻𝑓 ̅𝑓 interactions is 
far less (similar for 𝐻𝑔𝑔 and 𝐻𝛾𝛾).

• Most BSM theories, however, predict largest CP violation in 
𝐻𝑓 ̅𝑓  couplings.

• How can we improve on this situation?
• Direct constraints: CP-odd observables.
• Indirect constraints: CP-even observables.
• Kinematic information: potentially mixing CP-odd and 

CP-even observables.
• Complementarity with electric dipole moments (EDMs).
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[Faroughy et al.,1909.00007]

CP-odd observables:
• Clean interpretation.
• Difficult experimentally since top-

quark polarization needs to be 
measured.

Indirect constraints:
• Strong constraints from 𝑔𝑔𝐻 and 

𝐻𝛾𝛾 rate measurements.
• Constraints very model-dependent.

[HB et al., 2007.08542]

Kinematic information:
• Focus on comparably model-

independent 𝑡 ̅𝑡𝐻 production.
• Combination of different decay channels 

and across experiments difficult.

[CMS, 2208.02686]

Exploit complementarity of different approaches! 
Next steps: CP-sensitive STXS, degeneracies with CP-violation in non-Higgs couplings, other processes, …

→	See also Savvas’ talk on Thursday!



Complementarity with EDM constraints

• Several EDMs are sensitive to CP violation in the Higgs sector.

• Consider here only constraints from theoretically cleanest EDM: the electron EDM.                                     
[Brod et al.,1310.1385,1503.04830, 1810.12303, 2203.03736;Panico et al.,1810.09413;Altmannshofer et al.,2009.01258] 

• Limit by ACME collaboration: 𝑑!"#$% = 1.1 ⋅ 10&'(𝑒	cm at 90% CL. [ACME, Nature 562 (2018) 7727, 355-360]

• )#
)#$%&'

≃ 𝑐! 870.0�̃�* + 3.9�̃�+ + 3.4�̃�, +⋯ + �̃�!(610.1𝑐* + 3.1𝑐+ + 2.8𝑐, − 1082.6𝑐- +⋯)

• Bounds strongly depend on assumptions about electron-Yukawa coupling.

Henning Bahl 14



Complementarity with EDM constraints: 𝑡 and 𝜏

Henning Bahl 15

Very strong constraints on CP-odd 
top-Yukawa coupling.

CP-odd 𝜏 coupling can contribute 
significantly to baryon asymmetry.
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CP-insensitive 𝐻 → 𝜇&𝜇' rate 
measurement outperforms EDM 

constraint.

No.



Dependence on electron-Yukawa coupling
[HB et al.,2202.11753]
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔! ≤ 268 at 95% CL).

• If 𝑐! smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑! < 𝑑!"#$%.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔! ≤ 268 at 95% CL).

• If 𝑐! smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑! < 𝑑!"#$%.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.

LHC bounds important since they do not 
depend on 1st gen. Yukawa couplings.



What is still left to explore?
• Yukawa couplings (and their CP character)
• Higgs potential

Henning Bahl 18



What do we know about the Higgs potential?

• After the Higgs discovery, we know 
• the location of the EW minimum: 𝑣 = 246 GeV,
• the curvature of the potential close to the minimum: 
𝑚$ = 125 GeV.

• Away from the minimum, the shape of the potential is, 
however, unknown so far.

→Determination of trilinear Higgs coupling 𝜆$$$ crucial   
(dedicated session on Wednesday).

• 𝜆$$$ closely linked to
• stability of EW vacuum
• nature of EW phase transition (→	EW baryogenesis?). [figure by J. Braathen]
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• After the Higgs discovery, we know 
• the location of the EW minimum: 𝑣 = 246 GeV,
• the curvature of the potential close to the minimum: 
𝑚$ = 125 GeV.

• Away from the minimum, the shape of the potential is, 
however, unknown so far.

→Determination of trilinear Higgs coupling 𝜆$$$ crucial   
(dedicated session on Wednesday).

• 𝜆$$$ closely linked to
• stability of EW vacuum
• nature of EW phase transition (→	EW baryogenesis?). [figure by J. Braathen]

Is the Higgs trilinear also a discovery tool?
Henning Bahl 19



Case study: real singlet extension of the SM
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𝑉 Φ, 𝑆 = 𝑉() Φ +
1
2𝜇*

"𝑆" +
1
4! 𝜆*𝑆

+ + 𝜆*,𝑆"Φ-Φ

If 𝑆 does not get a vev, 𝜆... = 𝜆...()  at the tree-level (𝑚*
" = 𝜇*" + 𝜆*,𝑣").

The 1L correction to 𝜆... scales like (𝜆#$% ∼ 0.25) 

 𝜅/ ≡
/&&&
/&&&
'( =1 + !

+0 "
1)
*

2*/+
'( 1 − 3)

"

1)
"

4

whereas the dominant correction to other Higgs couplings scale like

 𝜅5 ≡ 5
5'(

=1 + !
+0 "

1)
"

2"
1 − 3)

"

1)
"

"

Deviation in 𝜆... enhanced by a factor 1)
"

2"/+
'( 1 − 3)

"

1)
"  w.r.t. to other Higgs couplings!



Trilinear Higgs coupling in the 2HDM

Henning Bahl 21

• Even larger deviations possible in the 2HDM 
(more BSM particles).

• Additional enhancement by 2L corrections.

• Maximal size bounded by perturbative 
unitarity.

• Currently strongest experimental limit on 𝜅/:
 
      −0.4 < 𝜅/ < 6.3 at 95% CL [ATLAS-CONF-2022-050]
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• Even larger deviations possible in the 2HDM 
(more BSM particles).

• Additional enhancement by 2L corrections.

• Maximal size bounded by perturbative 
unitarity.

• Currently strongest experimental limit on 𝜅/:
 
      −0.4 < 𝜅/ < 6.3 at 95% CL

Already current experimental limits on 𝜅/ probe 
so-far unconstrained BSM parameter space!

[ATLAS-CONF-2022-050]



Constraints on 𝜅! — benchmark scenario
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Other extension of SM Higgs sector

Henning Bahl 23

• Large loop corrections to 𝜅/ possible in 
various models.

• 𝜅/ very sensitive to BSM scalar couplings.

• Automatized calculation of 𝜅/  available in 
Python package anyH3.

• See also [1704.01953,1902.05936,2209.00666] for 
other models/more discussion.

Strong motivation for the experimental 
di-Higgs program!



Interplay between trilinear Higgs coupling and light 
Yukawas [Alasfar et al.,1909.05279 ,2207.04157]

Henning Bahl 24

Quark-induced ℎℎ production sensitive to size of 1st-gen Yukawas.

• Quark-induced channel more important for ℎℎ production than 
for single ℎ production.

• Freely floating 𝜅6 and 𝜅7  has significant impact on expected 
HL-LHC bounds on 𝜅/ from [0.53, 1.7] to [0.79, 2.3]                     
(using 6 ab'!).
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Quark-induced ℎℎ production sensitive to size of 1st-gen Yukawas.

• Quark-induced channel more important for ℎℎ production than 
for single ℎ production.

• Freely floating 𝜅6 and 𝜅7  has significant impact on expected 
HL-LHC bounds on 𝜅/ from [0.53, 1.7] to [0.79, 2.3]                     
(using 6 ab'!).



What is still left to explore?
• Yukawa couplings (and their CP character)
• Higgs potential
• Higgs width/BSM decay channels
• Flavour structure
• ….

Henning Bahl 25

→	See also Christina’s and Yingjie’s talks on Tuesday!



Conclusions
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Conclusions
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• The Higgs is not the last missing puzzle piece of the SM 
but could be the link to many BSM scenarios.

• Higgs precision measurements and precision predictions 
are crucial to understand electroweak symmetry 
breaking.

• Existing measurements already teach us a lot about 
possible BSM extensions.

• Much work still left to do:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …
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• The Higgs is not the last missing puzzle piece of the SM 
but could be the link to many BSM scenarios.

• Higgs precision measurements and precision predictions 
are crucial to understand electroweak symmetry 
breaking.

• Existing measurements already teach us a lot about 
possible BSM extensions.

• Much work still left to do:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

The Higgs will keep us busy for many decades to come!



Appendix
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Interlude: HiggsTools        [HB et al., 2210.09332]

Henning Bahl 29

HiggsTools is a complete and extended rewrite of HiggsBounds and HiggsSignals in modern C++.

HiggsPredictions-1 HiggsBounds-6 HiggsSignals-3

• Handles user input (model predictions).
• Provides tabulated cross sections and BRs.
• Common process definitions and clustering.

C++ interface for high performance; Python and Mathematica interfaces for ease of use.

current status: 258 limits current status: 131 measurements



Baryon asymmetry of the Universe

• Different techniques used in the literature to calculate BAU 𝑌.: 
• Vev-insertion approach (VIA),

[Huet&Nelson,9504427,9506477;Carena et al., 9603420;Riotto, 9712221;Lee et al.,0412354;Postma et al.,2206.01120]

• WKB (or FH) approximation.
[Joecy et al.,9410282;Kainulainen et al.,0105295, 0202177;Prokopec et al., 0312110, 0406140;Konstandin et al.,1302.6713, 1407.3132]

• VIA approach yields consistently higher results by orders of magnitude.

• We use VIA approach with bubble wall parameters close to optimal values for 𝑌.:                                
[de Vries,1811.11104;Fuchs et al.,2003.00099,2007.06940;Shapira,2106.05338]

𝑌.
𝑌./01

≃ 28�̃�* − 0.2�̃�+ − 11�̃�, +⋯

Henning Bahl 30

𝜂 ≡ 𝑌% 	 [Basler et al.,2108.03580]

𝑌. values should be regarded as upper bound on what is theoretically achievable.



Case study: real singlet extension of the SM
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𝑉 Φ, 𝑆 = 𝑉() Φ +
1
2𝜇*

"𝑆" +
1
4! 𝜆*𝑆

+ + 𝜆*,𝑆"Φ-Φ

If 𝑆 does not get a vev, 𝜆... = 𝜆...()  at the tree-level (𝑚*
" = 𝜇*" + 𝜆*,𝑣").

The 1L correction to 𝜆... scales like

𝜆...!8 ∝ 5&))
0

+0 " 𝐶9 … ∝ 5&))
0

+0 "
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1)
" ∝

!
+0 "

1)
*

20
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whereas the dominant correction to other Higgs couplings scale like

𝑔!8 ∝ 5&))
"

+0 "𝐵9: … ⋅ 𝑔;<== ∝
!
+0 "

1)
"

2"
1 − 3)

"

1)
"

"
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5'(
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+0 "
1)
"

2"
1 − 3)

"

1)
"

"

Deviation in 𝜆... enhanced by a factor 1)
"

2"/+
'( 1 − 3)

"

1)
"  w.r.t. to other Higgs couplings!



Calculating BSM corrections to 𝜅!
• Need to calculate Higgs three-point function:

• Alternatively, employ zero momentum approximation and then use effective potential:

• Using 𝑉/00, 1L and 2L corrections have been calculated in various BSM Higgs models (see e.g. 
[Braathen,Kanemura,1911.11507]).



Calculating BSM corrections to 𝜅! [Braathen,Kanemura,1911.11507]

𝛿𝑅 = 𝜅/ − 1

• Large non-decoupling corrections found in several 
BSM models.

• Analysis assumed that all BSM masses are equal 𝑀,.
• No phenomenological analysis has been performed.

Idea of this work:

Can we constrain these models based on the large 
corrections to 𝜅/?



2HDM parameter scan

• We checked for
• vacuum stability and boundedness-from-below,
• NLO perturbative unitarity, [Grinstein et al., 1512.04567; Cacchio et al., 1609.01290]

• electroweak precision observables (calculated at the 2L level using THDM_EWPOS), 
[Hessenberger & Hollik,1607.04610,2207.03845]

• SM-like Higgs measurements via HiggsSignals, [Bechtle et al., 2012.09197]

• direct searches for BSM scalars via HiggsBounds, [Bechtle et al., 2006.06007]

• b-physics constraints.

• Most constraints checked using ScannerS. [Mühlleitner et al., 2007.02985]

• For each point passing the constraints, we calculate 𝜅/ at the 1L and 2L level (𝜅/
(!) and 𝜅/

(")). [Braathen,Kanemura,1911.11507]



2HDM parameter scan — results 
(showing only points passing all constraints mentioned on previous slide)

• Largest corrections for 𝑚@ ≃ 𝑚.±, 𝑚. < 𝑚.± and 𝑚. ≃ 𝑚.±, 𝑚@ < 𝑚.± (𝜅/ of up to 9). 
• 2L corrections have sizeable impact (up to 70%).



Can we apply the experimental constraints on 𝜅!?
Assumptions of experimental bound:

• All other Higgs couplings are SM-like. 

Ø 2HDM in the alignment limit with heavy BSM masses.

• Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs coupling.

Ø No resonant contribution because 𝐻ℎℎ coupling is zero in alignment limit.

Ø Other BSM contributions to ℎℎ production?

Ø We include the all corrections leading in the large coupling 𝑔$$,, at the NLO and NNLO level.

∝ 𝒪(𝑦A"𝑔$$,," ) (not included) ∝ 𝒪(𝑦A𝑔$$,,4 ) (included)



Momentum dependence



The Higgs mass as a precision observable
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[Slavich, HB et al., 2012.15629]

• Also the Higgs mass is a precision observable useful for 
BSM phenomenology.

• In SUSY models, the Higgs mass can be predicted in 
terms of the model parameters.

• MSSM: 𝑀$ ∼ 125 GeV ⇒ stop masses ≿ 	2 TeV.

• Experimental precision significantly better than 
remaining theoretical uncertainty.                                   
(∼ 0.5 GeV for 𝑋&/𝑀' = 0 and ∼ 1 GeV for 𝑋&/𝑀' = 6)

Stop mixing parameter

Stop mass scale


