Precision measurements in tt final states from ATLAS

Barbora Eckerova on behalf of ATLAS Collaboration SM@LHC 2023 Fermilab

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

Top quark

Unique particle in SM:

- Quark with the largest mass
- Large coupling to Higgs boson (λ~1)
- Extremely small lifetime $T \sim 10^{-25} s$

> Decays before hadronization> Possibility to study"bare"-quark properties directlyfrom top decay products

• Almost exclusively decays to W and b quark

LHC = top-quark factory

- ~ 120 M top quarks produced at LHC during Run2 in ATLAS experiment
 - => Allows very precise measurements
 - => Probe QCD production of massive particles
 - => Potential to improve modelling for better understanding and control of uncertainties!

2

Differential cross-section of dilepton tt production

- **b-tag counting method** used:
 - σ_{tt} and combined jet selection and b-tagging efficiency εⁱ_b fitted simultaneously
 - N₁ⁱ, N₂ⁱ = number of data events with either
 1 or 2 b-tagged jets in each bin i

$$\begin{split} N_1^i &= \mathcal{L}\sigma_{t\bar{t}}^i G_{e\mu}^i 2\epsilon_b^i (1 - \epsilon_b^i C_b^i) + N_{1,\text{bkg}}^i \\ N_2^i &= \mathcal{L}\sigma_{t\bar{t}}^i G_{e\mu}^i (\epsilon_b^i)^2 C_b^i + N_{2,\text{bkg}}^i \end{split}$$

• Single/double-differential distributions of lepton kinematic variables from decays of tt pairs:

 $\mathsf{p}_{\mathsf{T}}{}^{\ell},\,|\eta^{\ell}\,|,\,m^{e\mu},\,p_{\mathsf{T}}{}^{e\mu}\,,\,|y^{e\mu}|\,,\,E^{e}+E^{\mu},\,p_{\mathsf{T}}{}^{e}+p_{\mathsf{T}}{}^{\mu},\,|\Delta\phi^{e\mu}|$

- Full Run2 dataset @ 13 TeV (140/fb), eµ channel
- Absolute and normalized σ_{tt}^{diff} in fiducial phase space ($p_T^{\ell 1(\ell 2)} > 27 (25) \text{ GeV}, |\eta^{\ell}| < 2.5$)
- Uncertainties:
 - lumi (dominant for absolute σ_{tt})
 - \circ tt modelling
 - reconstruction of leptons
 - $\circ \quad \mbox{bkg modelling: interference of tt and tW} \\ \mbox{amplitude (dominant for normalized } \sigma_{tt}, \mbox{ in high energy/mass bins)}$

Improved luminosity determination

-> lumi uncertainty on Xsection measurement only 0.93%!

Differential cross-section of dilepton tt production

- No MC prediction consistent with all distributions
- Better agreement with reweighted Powheg+Pythia8 based on NNLO corrections to top-quark p_T
- Almost all generators predict harder spectra for p_T^{ℓ} , $E^e + E^{\mu}$, $p_T^{e} + p_T^{\mu}$
- Poorest agreement given by Powheg+Pythia 8 (nominal)

150

 Acceptable match for normalized distrib. given by MadGraph5_aMC@NLO+Pythia 8.230

Differential cross-section of dilepton tt production

- Variable pairs useful for testing and tuning of MC generators
- No MC prediction consistent with all distributions
- No MC model describes data trend in $|\Delta \phi^{e\mu}|$:
 - MC under(over)-estimates data at low(high) bins

Differential cross-section of dilepton tt production

Modelling of *Wt* background:

- Interference between *t* and *Wt* evaluated by comparing effects of DR and DS scheme
- Modelling uncertainties in *Wt* considered correlated between *t* and *Wt*

Uncertainties related to tt modelling:

- Calculated with alternative tt samples or by reweighting nominal sample
- tt+heavy flavor quarks underestimated in MC
 => uncertainty estimated by increasing the fraction of events with at least 3 *b*-jets by 30%
- Powheg+Pythia 8.230 gives poor description of p_T^ℓ = due to top-quark p_T mismodelling
 => difference wrt reweighted sample based on NNLO top p_T prediction

$p_{\rm T}^{e\mu}$ bins [GeV]	$\begin{array}{c} 1/\sigma \ \mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}^{e\mu} \\ \times 10^{-3} \ [1/\mathrm{GeV}] \end{array}$	Data stat. [%]	MC stat. [%]	<i>tī</i> mod. [%]	Lep. [%]	Jets/ <i>b</i> -tag. [%]	Bkg. [%]	Lumi + E _{beam} [%]	Total unc. [%]
0.0-20.0	3.08	0.64	0.20	0.47	0.29	0.12	0.47	0.01	0.99
20.0-30.0	6.55	0.61	0.16	0.77	0.27	0.17	0.42	0.01	1.13
30.0-45.0	8.29	0.42	0.10	0.47	0.25	0.09	0.47	0.01	0.84
45.0-60.0	10.53	0.37	0.09	0.55	0.17	0.06	0.42	0.01	0.81
60.0-75.0	11.48	0.35	0.08	0.23	0.13	0.03	0.40	0.01	0.60
75.0-100.0	8.84	0.29	0.07	0.24	0.05	0.04	0.19	0.00	0.43
100.0-125.0	4.60	0.43	0.09	0.66	0.30	0.12	0.37	0.00	0.94
125.0-150.0	1.87	0.67	0.16	0.53	0.73	0.21	1.46	0.03	1.86
150.0-200.0	0.54	0.93	0.22	0.73	1.20	0.28	3.13	0.08	3.57
200.0-300.0	0.08	1.78	0.48	3.71	2.24	0.33	11.38	0.22	12.32

interference of tt and tW amplitude -> dominant in high energy/mass bins

Inclusive cross-section of dilepton tt production

- Fiducial space σ_{tt} and full phase-space σ_{tt}
- B-tag counting method
- Dominant uncertainty is luminosity unc., tW
 Xsection, electron isolation, top p_τ reweighting)
- Excellent agreement with prediction
- <u>Total uncertainty < 2% (1.8%)!</u>

 $\sigma_{t\bar{t}} = 829 \pm 1 \text{ (stat)} \pm 13 \text{ (syst)} \pm 8 \text{ (lumi)} \pm 2 \text{ (beam) pb}$

NNLO+NNLL calculation: $\sigma_{t\bar{t},pred} = 832^{+20}_{-29} \text{ (scale)}^{+23}_{-23} (m_t)^{+35}_{-35} \text{ (PDF+}\alpha_s) \text{ pb}$

Most precise inclusive tt cross-section measurement up to date!

arXiv.2303.15340

Source of uncertainty	$\Delta\sigma_{t\bar{t}}^{\rm fid}/\sigma_{t\bar{t}}^{\rm fid}~[\%]$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \ [\%]$
Data statistics	0.15	0.15
MC statistics	0.04	0.04
Matrix element	0.12	0.16
$h_{\rm damp}$ variation	0.01	0.01
Parton shower	0.08	0.22
$t\bar{t}$ + heavy flavour	0.34	0.34
Top $p_{\rm T}$ reweighting	0.19	0.58
Parton distribution functions	0.04	0.43
Initial-state radiation	0.11	0.37
Final-state radiation	0.29	0.35
Electron energy scale	0.10	0.10
Electron efficiency	0.37	0.37
Electron isolation (in situ)	0.51	0.51
Muon momentum scale	0.13	0.13
Muon reconstruction efficiency	0.35	0.35
Muon isolation (in situ)	0.33	0.33
Lepton trigger efficiency	0.05	0.05
Vertex association efficiency	0.03	0.03
Jet energy scale & resolution	0.10	0.10
b-tagging efficiency	0.07	0.07
$t\bar{t}/Wt$ interference	0.37	0.37
Wt cross-section	0.52	0.52
Diboson background	0.34	0.34
$t\bar{t}V$ and $t\bar{t}H$	0.03	0.03
Z + jets background	0.05	0.05
Misidentified leptons	0.32	0.32
Beam energy	0.23	0.23
Luminosity	0.93	0.93
Total uncertainty	1.6	1.8

Jet substructure in boosted tr pairs

- Study the substructure of top-quark jets arising from it's decay products (light-/b-quarks, gluons)
- 1- and 2-dimensional σ_{tt} ^{diff} of 8 jet substructure variables defined using only charged components of jets

Motivation:

- Poor modelling of jet substructure
- High sensitivity to some MC parameters
- Analytic description challenging
- Possibility to spot BSM effects
- Full Run2 dataset @ 13 TeV (140/fb)
- Boosted events: top-quark jet p_T > 350 GeV, decay products collimated into single large jet

Single-lepton channel:

Hadronic top
 reconstructed as
 re-clustered (RC)
 large-R jet (R=1.0)

All-hadronic channel:

- 2 large-R jets (R=1.0)
- (sub)Leading jet
 p_T > (350) 500 GeV
- DNN top-tag on the non-probe large-R jet
- Distributions unfolded by <u>IBU</u> to particle level

ATLAS-CONF-2023-027

Jet substructure in boosted terpairs: single σ_{tt}^{diff}

8 jet substructure variables sensitive to e.g.:

- Modeling of 3-body (τ_{32}, C_3) or 2-body (D_2, τ_{21}) substructure of jets
- Distribution of the momentum of the constituents inside the jet $(\mathbf{p}_{\mathsf{T}}^{d,*})$

- Good description by Powheg+Pythia 8 (FSR Down)
 => data favors a reduction of FSR scale = increase of a_c ^{FSR} value
- Herwig 7 preferred by data over Pythia 8

 Measurement sensitive to modelling of parton-shower, hadronization process, and FSR 9

Jet substructure in boosted terpairs: single σ_{tt}^{diff}

- **Poor modelling of 3-body substructure of jets** by nominal or nominal+FSR up prediction
- Variables sensitive to 2-body jet substructure well modelled
- Powheg+Pythia 8 (FSR Down) = good description of all observables, except τ₃₂ in l+jets
- τ_{32}/τ_3 = poorly modelled, only MC@NLO+Pythia8 gives reasonable agreement with data

ATLAS-CONF-2023-027

ATLAS-CONF-2023-027

Jet substructure in boosted tt pairs: double σ_{tt}^{diff}

- Predictions give more 3-body like substructure than data
- Powheg+Pythia 8 gives poor description
- Other MC more promising, **best Powheg+Pythia 8** (FSR down)

τ₃₂ and D₂ distinguish jets with 3/2-body substructure from simpler jets (taggers)

=> correlations with m_t^{t} and $p_{T}^{t}^{t}$ important

• Correlations of $\tau_{32}^{}/D_{2}^{}$ with $m_{t}^{}$ and $p_{T}^{t}^{}$ poorly modelled

(low m_t and higher p_{T}^t regions problematic)

W-boson polarization in tt production

- W-boson polarization states governed by Wtb vertex and quark masses (only left-handed f_1 and longitudinal f_0 , right f_R polarization ~ 0 in SM = V-A structure of SM)
- Probe new physics processes which modify the structure of *Wtb* vertex
- Dilepton tt decay channel @13 TeV (139/fb)

$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} (1 - \cos^2\theta^*) f_0 + \frac{3}{8} (1 - \cos\theta^*)^2 f_L + \frac{3}{8} (1 + \cos\theta^*)^2 f_R$

 Helicity fractions extracted by fit to normalised differential cos θ* distribution unfolded to parton level by <u>IBU</u>

W-boson polarization in tt production

- MC at parton level fails to model cos θ* distribution correctly
- Distribution distorted by simulation of parton shower at ~ 0.1% level

=> MC has to be reweighted to match quadratic function of cos θ*

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta^*} = \frac{3}{4}(1-\cos^2\theta^*)f_0 + \frac{3}{8}(1-\cos\theta^*)^2f_L + \frac{3}{8}(1+\cos\theta^*)^2f_R$$

• Systematic uncertainty dominant

W-boson polarization in tt production

- Largest systematics: modelling of # production, dominated by choice of matrix-element generator
- Other significant uncertainties: jet energy scale and resolution, electron and muon reconstruction

Category	σ_{f_0}	$\sigma_{f_{ m L}}$	$\sigma_{f_{\rm R}}$
Detector m	odelling		π2
Jet reconstruction	0.008	0.004	0.010
Flavour tagging	0.003	0.001	0.001
Electron reconstruction	0.003	0.002	0.002
Muon reconstruction	0.003	0.003	$< 10^{-3}$
$E_{\rm T}^{\rm miss}$ (soft term)	$< 10^{-3}$	0.002	$< 10^{-3}$
Pile-up	0.002	0.002	$< 10^{-3}$
Luminosity	0.001	0.001	< 10 ⁻³
Signal and backgr	ound mo	delling	
<i>tī</i> production	0.011	0.005	0.010
PDF	0.002	0.001	< 10 ⁻³
Single top production	$< 10^{-3}$	0.002	$< 10^{-3}$
Other background	0.002	0.001	< 10 ⁻³
Total systematic uncertainty	0.014	0.008	0.014
Data statistical uncertainty	0.005	0.003	0.002
Total uncertainty	0.015	0.008	0.014

JHEP 06 (2023) 019

Soft muon tag top-quark mass

Different method of direct top-quark mass measurement => invariant mass of lepton from W (ℓ) and soft muon (μ) m_{$\ell\mu$} used

• Single-lepton tt channel, 36/fb @ 13 TeV

- Proxy for m_t constructed only from leptons = invariant mass m_{eu}:
 - Less sensitive to jet related uncertainties
 - More direct impact from $b \rightarrow B$ fragmentation modelling

Soft muon tag top-quark mass

Soft muon tag top-quark mass

- Binned-template profile likelihood fit is performed to extract m_{t}
 - **Region of m**_{$\ell\mu$} between 15 and 80 GeV used in fit (most sensitive to m₊)

 $m_t = 174.41 \pm 0.39 ~{
m (stat.)} \pm 0.66 ~{
m (syst.)} \pm 0.25 ~{
m (recoil)}~{
m GeV}$

 Events divided into same-sign/opposite sign regions (q_{softmu}*q_{W-lepton}> 0 and < 0)
 Better isolation of same top events with direct

> b->µX decays, which have better sensitivity to top mass wrt different top and/or b->cX->µX' decays

• Dominant uncertainty comes from modelling of direct/sequential b-hadron decays and b-quark fragmentation

Soft muon tag top-quark mass

 $m_t = 174.41 \pm 0.39~{
m (stat.)} \pm 0.66~{
m (syst.)} \pm 0.25~{
m (recoil)}~{
m GeV}$

For the first time used **uncertainty on gluon emission** in $t \rightarrow Wb$

Change in parton shower gluon-recoil scheme:

- Nominal: gluons recoil against b-quark
- Alternative: recoil against W-boson (RTW) or top-quark (RTT)
 - Changes energy distribution within jet, jet p_T due to out-of-cone radiation, hardens b-hadron momentum, lowers gluon-energy emission
 - => b-fragmentation function altered as a side effect

Nominal in better agreement with NLO+NLL resummations \rightarrow fragmentation variable x_B reweighted to match that of the nominal sample (RTW+rw/RTT+rw)

• Crude adjustment, requires dedicated tune

Recoil uncertainty = comparison of nominal scheme and recoil against top-quark + reweighting of X_B

ATLAS-CONF-2022-058

Top mass template method in dilepton tt channel

• m_t extracted using template fit functions, $m_{\ell b}$ in (50, 140) GeV used = $m_{\ell b}^{High}$

- Dilepton tt decay channel @13 TeV (139/fb)
- Proxy for m_t constructed from decay products of top: lepton *l* and b-jet => m_{lb}
- Optimized selection:

0

- O DNN used for ℓ-b-jet pairing: events with DNN
 score > 0.65 selected
 better precision!
- $p_T^{\ell b} > 160 \text{ GeV}$
 - ℓ -b with highest $p_T^{\ell b}$ selected \rightarrow helps reduce signal modelling and jet-related uncertainties

19

ATLAS-CONF-2022-058

Top mass template method in dilepton tt channel

- Unbinned maximum-likelihood fit to data
- Fitted m_t = mass parameter in ATLAS signal generator setup

Recoil scheme in parton shower:

- Nominal = 2nd gluon emission (and subsequent), recoils against b-quark
 - Narrower m_t spectrum, more collinear radiation
- Alternative = recoil against top-quark
 - More out-of-cone radiation, but likely overestimates these effects (no dedicated tune)

Additional source of uncertainty = choice of gluon-recoil scheme
 m^{dilepton}_{top} = 172.21 ± 0.20 (stat) ± 0.67 (syst) ± 0.39 (recoil) GeV

20

ATLAS-CONF-2022-058

Top mass template method in dilepton tt channel

- Signal-modelling uncertainties significant
 - Evaluated by comparing pairs of theory models
 - Largest: modelling of matrix-element to parton-shower matching in tt
- Precision limited also by uncertainties in jet energy determination
- Description recoil in the Pythia parton shower sizable impact on m_t
 -> quote a conservative estimate

	$m_{\rm top} {\rm [GeV]}$
Result	172.21
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.40 ± 0.06
Parton shower and hadronisation	0.05 ± 0.05
Initial- and final-state QCD radiation	0.17 ± 0.02
Underlying event	0.02 ± 0.10
Colour reconnection	0.27 ± 0.07
Parton distribution function	0.03 ± 0.00
Single top modelling	0.01 ± 0.01
Background normalisation	0.03 ± 0.02
Jet energy scale	0.37 ± 0.02
<i>b</i> -jet energy scale	0.12 ± 0.02
Jet energy resolution	0.13 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.11 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.39 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.80 ± 0.06

Summary

- Presented some top-related precision measurements: Xsection, jet substructure, W polarization and top mass measurements
- More results: <u>ATLAS Top Results page</u>
- Modelling uncertainties have sizable impact on some measurements
 => despite impressive precision achieved!
 => the most precise measurement of inclusive tt cross section!
- Nominal pair of generators (Powheg+Pythia8) has drawbacks -> improvement needed!
 - recoil of gluons in color resonance decay (t->Wb)
 - parton shower (shown some preference of Herwig7 over Pythia8)
 - $\circ \quad \text{ interference of } t\overline{t} \text{ and } tW$
 - \circ α_s^{FSR} values in modelling of final state radiation
 - top-quark p_T mismodelling -> distortions in p_T^{ℓ} spectrum
- More studies needed for better understanding
- Development of specific dedicated tunes (recoil, color reconnection) also needed

Back-up

Jet substructure in boosted tt pairs

ATLAS-CONF-2023-027

Single-lepton channel:

- Electron or Muon
- $m_T^W > 20 \text{ GeV}, E_T^{\text{miss}} > 15 \text{ GeV} \text{ and } m_T^W + E_T^{\text{miss}} > 60 \text{ GeV} \text{ to suppress fake leptons}$
- Hadronically-decaying top reconstructed as re-clustered (RC) large-R jet (R=1.0)
- No required b-matching on the measured jets

All-hadronic channel:

- No leptons
- Hadronically-decaying top reconstructed as large-R jet => 2 large-R jets (R=1.0)
- (sub)Leading jet $p_T > (350) 500 \text{ GeV}$
- Required b-matching on the measured jets to suppress multijet bkg.
- DNN top-tag on the non-probe large-R jet

Jet substructure in boosted tt pairs

8 jet substructure variables:

- Observables sensitive to modeling of three-prong (τ_{32}, C_3) or two-prong (D_2, τ_{21}) objects
 - N-subjettiness variables τ_3 and ratios $\tau_{32} \equiv \tau_3/\tau_2$ and $\tau_{21} \equiv \tau_2/\tau_1$
 - C₃ and D₂ defined as ratios of energy-correlation functions
 - \circ $(\tau_{32}, C_3)/(D_2, \tau_{21})$ close to 0/1 for three/two-pronged substructure of jet
- Normalized energy-correlation function **ECF2**
- Modeling of Les Houches angularity **LHA** = describes broadness of a jet
- Scaled p_T dispersion p_T^{d,*} = sensitive to distribution of momentum of the constituents inside the jet

Differential cross-section of dilepton tt production

Modelling of *Wt* background:

• Interference between *#* and *Wt* evaluated by comparing effects of DR and DS scheme

absolute cross section

Uncertainties related to tt modelling:

- Calculated with alternative tt samples or by reweighting nominal sample
- tt+heavy flavor quarks underestimated in MC
 => uncertainty estimated by increasing the fraction of events with at least 3 *b*-jets by 30%
- Powheg+Pythia 8.230 gives poor description of p_T^ℓ = due to top-quark p_T mismodelling
 => difference wrt reweighted sample based on NNLO top p_T prediction

$p_{\rm T}^{e\mu}$ bins [GeV]	$d\sigma/dp_{T}^{e\mu}$ [fb/GeV]	Data stat. [%]	MC stat. [%]	<i>tī</i> mod. [%]	Lep. [%]	Jets/ b-tag. [%]	Bkg. [%]	Lumi + E _{beam} [%]	Total unc. [%]
0.0-20.0	32.51	0.66	0.21	0.87	0.79	0.19	0.67	0.92	1.79
20.0 - 30.0	69.08	0.64	0.17	0.87	0.78	0.22	0.68	0.92	1.78
30.0-45.0	87.41	0.46	0.11	0.90	0.78	0.18	0.66	0.92	1.72
45.0-60.0	111.0	0.41	0.09	0.71	0.79	0.15	0.64	0.92	1.61
60.0-75.0	121.0	0.38	0.09	0.66	0.79	0.14	0.63	0.92	1.57
75.0-100.0	93.20	0.33	0.07	0.70	0.78	0.12	0.66	0.92	1.59
100.0-125.0	48.51	0.45	0.10	0.97	0.89	0.15	0.99	0.93	1.96
125.0-150.0	19.74	0.70	0.17	0.38	1.20	0.21	1.98	0.95	2.64
150.0-200.0	5.73	0.95	0.23	0.55	1.62	0.28	3.65	1.00	4.28
200.0-300.0	0.86	1.78	0.49	3.39	2.64	0.35	11.88	1.14	12.82

interference of tt and tW amplitude -> dominant in high energy/mass bins

Differential cross-section of dilepton tt production

b-tagging correlation coef.

	reconstruction efficier				
Systematic uncertainty name	$\Delta C_b/C_b$ [%]	$\Delta G_{e\mu}/G_{e\mu}$ [%]			
Matrix element	-0.10 ± 0.22	0.25 ± 0.11			
h _{damp}	-0.06 ± 0.08	-0.05 ± 0.04			
Parton shower and hadronisation	0.16 ± 0.08	-0.26 ± 0.04			
Top $p_{\rm T}$ reweighting	0.03 ± 0.08	0.22 ± 0.04			
$t\bar{t}$ + heavy flavour	-0.33 ± 0.08	0.01 ± 0.04			
ISR (high)	-0.01 ± 0.08	0.06 ± 0.04			
ISR (low)	0.04 ± 0.08	-0.13 ± 0.04			
FSR (high)	0.05 ± 0.09	-0.07 ± 0.04			
FSR (low)	-0.09 ± 0.15	0.10 ± 0.07			
PDF	0.02 ± 0.08	0.04 ± 0.04			

All uncertainties shown are due to the limited MC sample size

Uncertainties related to tt modelling:

- Calculated with alternative tt samples or by reweighting nominal sample
- Contribution of tt+heavy flavor quarks underestimated in MC
 => uncertainty estimated by increasing the fraction of events with at least 3 *b*-jets by 30%
- Powheg+Pythia 8.230 does not give good description of p_T^ℓ = due to top-quark p_T mismodelling
- => uncertainty derived as difference wrt sample with top p_T reweighted to NNLO

Modelling of *Wt* background:

- Interference between # and Wt evaluated by comparing effects of DR and DS scheme on result
- Modelling uncertainties in *Wt* considered correlated between *t* and *Wt*