Challenges towards the global EFT fit

Hannes Mildner on behalf of the ATLAS and CMS collaborations

12 July 2023

SM@LHC 2023

12 July 2023 1 / 20

- Will discuss challenges towards global EFT interpretations in ATLAS+CMS
- Using 2022 ATLAS global combination as main example (no CMS or ATLAS+CMS combination published so far)
- Will highlight certain challenges with examples from CMS
- Will also discuss steps towards ATLAS+CMS combinations in LHC EFT WG

Global EFT fits

- SMEFT describes possible *patterns of deviations* introduced by new physics
- \blacksquare Constrain deviations predicted by SMEFT \Rightarrow constrain UV theories
 - (UV-SMEFT matching overview: CERN-LHCEFTWG-2022-002)
- Global fits allow us to
 - Use a theoretically consistent framework for many measurements
 - Enhance our sensitivity (possibly combine small deviations to strong signal)
 - Improve coverage of parameter space (reduce blind directions)
 - Take into account measurement correlation
- Global fits exist from theory collaborations (e.g., SMEFiT, "fitmaker")
- Experimental combinations using different assumptions, different strengths
 - More accurate treatment of uncertainties
 - Direct feedback to measurements
 - Can feed into external, more comprehensive fits

SM@LHC 2023

12 July 2023 3 / 20

Challenge #1: So many degrees of freedom! (part 1)

- Focused on leading effects: dimension-six operators
- Large number of dimension six operators, >2000 degrees of freedom!
- Need to make symmetry assumptions, ATLAS choice
 - Flavour symmetric but t and b separate $U(2)_q^3 \times U(3)_\ell^2$
 - CP-even operators only
 - ightarrow O(100) d.o.f.
- Include many measurements to constrain degrees of freedom

	$1: X^{3}$		$2: H^{6}$		$3: H^4D^2$			$5: \psi^2 H^3 + h.c.$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q _H (1	$(H^{\dagger}H)^{3}$	$Q_{H\square}$	(H^{\dagger})	$H)\square(H^{\dagger}H)$	ŋ –	Q_{eH}	$(H^\dagger H)(\bar{l}_p e_\tau H)$	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D^{\mu})$	H) $(H^{\dagger}L$	$D_{\mu}H$	Q_{uH}	$(H^\dagger H)(\bar{q}_p u_r \widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^\dagger H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$									
$4: X^2 H^2$		$6:\psi^2 XH+{\rm h.c.}$				$7: \psi^2 H^2 D$				
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	$Q_{eW} = (\bar{l}_p \sigma^{\mu\nu} e$		$e_r)\tau^I H W^I_{\mu\nu}$		$Q_{Hl}^{(1)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{H\tilde{G}}$	$H^{\dagger}H \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	$Q_{eB} = (\bar{l}_p \sigma^{\mu})$		$F_{e_r} H B_{\mu\nu}$		$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$Q_{uG} = (\bar{q}_p \sigma^{\mu\nu} T$		$\Gamma^A u_r \widetilde{H} G^A_{\mu\nu}$		Q_{He}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{H\overline{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW} $(\bar{q}_p \sigma^{\mu\nu})$		$u_r \tau^I \tilde{H} W^I_{\mu\nu}$		$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$_{uB} = (\bar{q}_p \sigma^{\mu\nu} u_r)$		ν	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{H\tilde{B}}$	$H^{\dagger}H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$Q_{dG} = (\bar{q}_p \sigma^{\mu\nu} T^A)$		$(d_r)HG^A_{\mu\nu}$		Q_{Hu}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
Q _{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} e$	$l_r)\tau^I H W^I_{\mu\nu}$		Q_{Hd}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu}$	νd_r) H B _µ	v	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	
	$8:(\bar{L}L)(\bar{L}L)$		8 : (.	$\bar{R}R)(\bar{R}R)$			8:	$(\bar{L}L)(\bar{R}H$	2)	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(ē,	$_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}$	μe_t	Q_{le}	($\bar{l}_p \gamma_\mu l_r)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(<i>ū</i> _p	$\gamma_{\mu}u_{r})(\bar{u}_{s})$	$\gamma^{\mu}u_t$)	Q_{lu}	6	$\bar{l}_p \gamma_\mu l_\tau)(\bar{u}$	$_*\gamma^{\mu}u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	$) = Q_{dd}$	Q_{dd} $(\bar{d}_p$		$\gamma_{\mu}d_{\tau})(\bar{d}_{s}\gamma^{\mu}d_{t})$		$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	Q_{eu} (\bar{e}_p		$\gamma_{\mu}e_{\tau})(\bar{u}_{s}\gamma^{\mu}u_{t})$		$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	(ē ₁	$\gamma_{\mu}e_{r})(\bar{d}_{s})$	μd_t	$Q_{qu}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(i$	$i_s \gamma^{\mu} u_t$)	
		$Q_{ud}^{(1)}$	(ū,	$\gamma_{\mu}u_{r})(\bar{d}_{s})$	$\gamma^{\mu}d_t$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_p)$	$_{\mu}T^{A}q_{r})(i$	$i_s \gamma^{\mu} T^A u_t$)	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)(\bar{d}_s)$	$\gamma^{\mu}T^{A}d_{t}$	$Q_{qd}^{(1)}$	(8	$\bar{q}_p \gamma_\mu q_r)(\dot{a}$	$l_s \gamma^{\mu} d_t$)	
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_p)$	$\mu T^A q_r)(\dot{a}$	$(\gamma^{\mu}T^{A}d_{t})$	
8 : (Ī	$R)(\bar{R}L) + h.c.$	$8:(\bar{L})$	$R)(\bar{L}R)$	+ h.c.	_					
Q_{ledg}	$(l_p^j e_r)(d_s q_{tj}) = Q_q^{(j)}$	1) page	$(\bar{q}_p^j u_r)\epsilon_j$	$_{jk}(\bar{q}_{s}^{k}d_{t})$						
	$Q_{q}^{(}$	(\bar{q}_p^j) (\bar{q}_p^j)	$T^A u_r) \epsilon_i$	$_{jk}(\bar{q}_s^kT^Ad_t$)					
$Q_{lequ}^{(1)} = (\overline{l}_{p}^{l}e_{r})e_{jk}(\overline{q}_{s}^{k}u_{\ell}) \qquad H^{\dagger}i\overleftarrow{D}_{\mu}H \equiv H^{\dagger}iD_{\mu}H - (iD_{\mu}H^{\dagger})H$										
	Q_l^0	(\bar{l}_{pqu}^{j})	$\sigma_{\mu\nu}e_r)\epsilon_j$	$_{k}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u$) H	$i \stackrel{\longleftrightarrow}{D}{}^{I}_{\mu} H \equiv$	$H^{\dagger}i\tau$	$^{I}D_{\mu}H -$	$(iD_{\mu}\tau^{I}H^{\dagger})H$	
	D 10 (00	17)	070							

JHEP 12 (2017) 070

Hannes Mildner

SM@LHC 202

12 July 2023 4 / 20

JOHANNES GUTENBERG UNIVERSITÄT MAI

Observables

- Experimental input of the ATLAS global fit ATL-PHYS-PUB-2021-022
 - SM input parameters: m_W , m_Z , and G_{μ} (Recommendations of CERN-LHCEFTWG-2021-001)
 - LEP&SLD measurements on Z resonance (pseudo observables): Γ_Z , σ_{had} , R_ℓ , R_b , R_c , $A^0_{FB,\ell}$, $A^0_{FB,b}$, $A^0_{FB,c}$
 - Four ATLAS multiboson measurements (unfolded differential cross-sections)
 - ATLAS Higgs measurements (simplified template cross-sections, "STXS")
- Similar to theory collaboration fits but fewer measurements, no top quark measurements
- See also a review of different observables and measurements in CERN-LHCEFTWG-2022-001

12 July 2023 5 / 20

ATLAS global fit: electroweak measurements

Interpretation of fiducial differential cross-sections ATL-PHYS-PUB-2021-022

SM@LHC 2023

12 July 2023 6 / 20

ATLAS global fit: Higgs STXS

Example $VH(b\bar{b})$ and one region only (250 GeV $< p_T^V <$ 400 GeV)

12 July 2023 7 / 20

Hannes Mildner

SM@LHC 2023

Challenge #2: Predictions

- For each observable and bin: parametrize rate $\sigma_{\mathsf{SMEFT}} = \sigma_{\mathsf{SM}}^{\mathsf{best}} \frac{\sigma_{\mathsf{SMEFT}}^{\mathsf{bO}}}{\sigma_{\mathsf{SM}}^{\mathsf{bO}}} = \sigma_{\mathsf{SM}}^{\mathsf{best}} (1 + \sum_{i} A_i \frac{c_i}{\Lambda^2} + \sum_{i,j} B_{ij} \frac{c_i c_j}{\Lambda^4})$
- \blacksquare Assumes higher-order corrections factorize \rightarrow not always good assumption
- Searching for small deviations requires precise SM predictions and uncertainty estimates
- \blacksquare Huge number of SMEFT degrees of freedom to simulate \rightarrow reweighting
- For ATLAS global fit: parametrization on particle level, SMEFT samples not propagated through detector simulation (faster turnaround)
- Will focus on leading linear term $\sum_i A_i \frac{c_i}{\Lambda^2}$ (due to BSM-SM interference) first

SMEFT impact example

SMEFT impact example

Challenge #3: Validity of SM assumption

- Reparametrization on particle level assumes SM efficiency
- Only small differences in efficiency for fully differential cross-section measurements
- STXS defined in full phase space for decay \rightarrow need to model acceptance (important for 4ℓ)

ATL-PHYS-PUB-2022-037

- Effects on backgrounds typically not considered
 - Often estimated from data in control regions
 - Otherwise assumed to be subdominant
- Most correct and most powerful: dedicated measurements...

SM@LHC 2023

12 July 2023 10 / 20

Adding dedicated SMEFT measurements?

• Example CMS $t\bar{t}H(b\bar{b})+t\bar{t}Z(b\bar{b})$ EFT interpretation (see also top+leptons measurement CMS PAS TOP-22-006 and Kelci's talk)

- SMEFT effects simulated for $t\bar{t}H$, $t\bar{t}Z$, and $t\bar{t}b\bar{b}$ background
- SMEFT samples propagated through detector simulation
- Dedicated measurements can maximize sensitivity (e.g. machine learning)
- So far not included in global fit as post-hoc harmonization of assumptions (e.g. operators considered) challenging

Challenge #4: Correlations and overlap

- Estimating correlation of systematic uncertainties challenging even within experimental collaboration
- Overlapping event selections also lead to correlation
 - Remove overlapping events or assess correlation, e.g., with bootstrapping
 - Important for top measurements (e.g. $t\bar{t}Z$ and tZq, or various aspects of $t\bar{t}$)
- ATLAS global combination currently
 - $\blacksquare \ \mathcal{O}(1000)$ nuisance parameters
 - (Partially) correlates: luminosity, pile-up, jet energy scale and resolution, WW modelling systematics between Higgs and other EW measurements
 - \blacksquare Removes WW CR of $H \to WW^*$ due to overlap with WW measurement
- Note that (SM) theory uncertainties can be sizable, too and correlation notoriously tricky

Challenge #1, part 2: So many degrees of freedom!

- Identify sensitive directions using simplified model of likelihood
- Decorrelated in groups for better interpretability
- Remove EV with expected limits c/Λ > 5/TeV² (unlikely small Λ or extremely strongly coupled NP)

SM@LHC 2023

12 July 2023 13 / 20

ATLAS global fit: linearized fit

- Constraints range from $< 0.01/{\rm TeV}^2$ (possibly constraining multi-TeV new physics) to $\approx 10/{\rm TeV}^2$
- Tightest constraints from EWPD: σ_{had}^0 , Γ_Z , A_{FB}
- $\blacksquare \mbox{ Tight constraints also from } H \to \gamma \gamma \mbox{ and } gg \to H$
- Electroweak measurements constrain four-fermion and triple-gauge operators
- LHC (esp. *VH* and *WZ*) beginning to complement *Z*-coupling measurements

SM@LHC 2023

12 July 2023 14 / 20

Challenge #5: Validity of SMEFT

- So far only considered effects linear in Wilson coefficients
- Calculation of cross section from SMEFT amplitude:

$$\begin{split} \sigma &= |\mathcal{A}_{\mathsf{SM}} + \mathcal{A}_{\mathsf{dim6}} + \mathcal{A}_{\mathsf{dim8}} + \ldots|^2 \\ &= |\mathcal{A}_{\mathsf{SM}}|^2 + \underbrace{2\mathsf{Re}\{\mathcal{A}_{\mathsf{SM}}^*\mathcal{A}_{\mathsf{dim6}}\}}_{\propto \frac{c_{\mathsf{dim6}}^2}{\Lambda^2}} + \underbrace{|\mathcal{A}_{\mathsf{dim6}}|^2}_{\propto \frac{c_{\mathsf{dim6}}^2}{\Lambda^4}} + \underbrace{2\mathsf{Re}\{\mathcal{A}_{\mathsf{SM}}^*\mathcal{A}_{\mathsf{dim8}}\}}_{\alpha \ll \mathsf{M}} + \underbrace{\ldots}_{\mathsf{add. unkown } \propto \frac{1}{\Lambda^4}} \end{split}$$

- Terms quadratic in c_{dim6}
 - \blacksquare Suppressed by $\Lambda^{-4},$ expect it to be smaller than linear term
 - \blacksquare Stronger energy growth than Λ^{-2} terms \Rightarrow often relevant at LHC
- Comparing "linear" and "quadratic" fits at dim-6 can give feeling for missing dim-8 contribution but not an uncertainty estimate

12 July 2023 15 / 20

ATLAS global fit: quadratic terms

- Comparing linear and linear+quadratic (no EWPO) fit
- Results can differ significantly
- Need better estimate of truncation uncertainty, two possible approaches discussed in CERN-LHCEFTWG-2021-002:
 - Including uncertainties for missing O(Λ⁻⁴) contributions in fit – hard to implement and competing recipes how to estimate these
 - Fits with varying high-mass cut-off of event selection – difficult to coordinate mass cuts in global fit

16 / 20

SM@LHC 2023

12 July 2023

CMS W γ : addressing validity questions

- Diboson production plagued by small interference of SM and BSM ⇒ small linear SMEFT impact, validity questions due to dominant quadratic terms
- \blacksquare CMS $W\gamma$ uses 2D binning sensitive to ϕ modulation due to interference

Hannes Mildner

SM@LHC 2023

CMS W γ : addressing validity questions

Phys. Rev. D 105 (2022) 052003

- Cut-off in p_T^{γ} similar to high-mass cut-off discussed in LHC EFT WG
- Binning in ϕ "resurrects" (Phys.Lett.B 776 (2018) 473-480) interference (left)
- Quadratic/BSM effects still important, especially at high p_T^{γ} (right)

Challenge #6: ATLAS+CMS combination

- ATLAS+CMS combination can increase precision, improve coverage
- Two combination excersizes ongoing in Area 4 of LHC EFT WG

$\mathsf{EW}+\mathsf{Higgs}+\mathsf{top}$

- Combination based on public data, Gaussian model
- More complex models planned
- Common infrastructure & cross checks of parametrization
- Common STXS parametrization being developed
- Combined fit can be sandbox to study LHC EFT WG proposals (e.g. on validity) in simplified fit

$t\bar{t}Z{+}t\bar{t}\gamma$

- Top combination partially under LHC top WG umbrella
- Common ttbar samples useful for SM baseline
- Complex "reconstruction level" combination of ATLAS tt̄Z [Eur. Phys. J. C 81 (2021) 737] CMS tτ̄γ [JHEP 05 (2022) 091] studied
- Only two measurement but try to achieve perfect agreement in ATLAS and CMS fit models

SM@LHC 2023

12 July 2023 19 / 20

Conclusion

- Presented EFT combination programme of ATLAS, CMS, and LHC EFT WG
- Mainly discussed first ATLAS global (EWPO+EW+Higgs) combination
- Highlighted six main challenges
 - 1. Number of degrees of freedom \rightarrow requires effort but (surprisingly) manageable
 - 2. Precise predictions \rightarrow needed for SM and SMEFT
 - 3. SM assumption of interpreted measurements \rightarrow requires ad-hoc fixes or dedicated SMEFT measurements
 - 4. Overlap and correlations \rightarrow so far moderate impact but sometimes difficult to assess even within collaboration
 - 5. Validity \rightarrow possibly most serious challenge, competing proposals, difficult to implement for large combination
 - 6. ATLAS+CMS combination \rightarrow still in infancy, requires coordination and harmonization

SM@LHC 202

12 July 2023 20 / 20

Backup

SM@LHC 2023

12 July 2023

20 / 20

Motivation of cut-off

SM@LHC 2023

12 July 2023 20 / 20

Sensitive directions

■ Identify sensitive directions (using a simplified model)
⇒ fit eigenvectors corresponding to (uncorrelated) sensitive direction, fix weakly constrained directions to zero

2023

12 July 2023 20 / 20