

The structure of the dimension-8 anomalous dimension matrix

Mikael Chala (University of Granada)

based on 2106.05291, 2110.01264, 2301.09995 and ongoing work

Standard Model at the LHC 2023, Fermilab; July 12, 2023

The SMEFT is the SM extended with effective operators
(Probably) the most reasonable model of new physics

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)}+\cdots
$$

If probed by experiments at very different scales, RGEs of the theory are needed [Jenkins, Manohar, Trott, Alonso $\left.{ }^{\prime} 13\right]$.

Interesting theoretical aspects at dimension 8 (positivity, tree-loop mixing, test tools, ...)

Besides pure theoretical considerations, anomalous dimensions of dimension- 8 operators [Murphy '20; Li, Ren, Shu, Xiao, Yu, Zheng '20] not always phenomenologically irrelevant

Simplest example:

Integrate out

Custodial symmetry violation absent at tree-level dimension-6, one-loop dimension-6 and tree-level dimension-8 [MC,Krause, Nardini ' ${ }^{\text {18 }}$; Durieux, McCullough, Salvioni '22]

Partial results on SMEFT RGEs to dimension 8:
MC, Guedes, Ramos, Santiago; 2106.05291
Accettulli Huber, De Angelis; 2108.03669
Bakshi, MC, Diaz-Carmona, Guedes; 2205.03301
Helset, Jenkins, Manohar; 2212.03253
Asteriadis, Dawson, Fontes; 2212.03258
Bakshi, Diaz-Carmona; 2301.07151
Helset, Jenkins, Manohar; 2212.03253
Di Zhang; 2306.03008

	d_{5}	d_{5}^{2}	d_{6}	d_{5}^{3}	$d_{5} \times d_{6}$	d_{7}	d_{5}^{4}	$d_{5}^{2} \times d_{6}$	d_{6}^{2}	$d_{5} \times d_{7}$	d_{8}
$d_{\leq 4}$ (bosonic)			\checkmark						\checkmark		\checkmark
$d_{\leq 4}$ (fermionic)			\checkmark						X		X
d_{5}	\checkmark				\checkmark	\checkmark					
d_{6} (bosonic)		\checkmark	\checkmark					X	\checkmark	X	\checkmark
d_{6} (fermionic)		\checkmark	\checkmark					X	X	X	X
d_{7}				\checkmark	\checkmark	\checkmark					
d_{8} (bosonic)							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
d_{8} (fermionic)							X	X	X	X	\checkmark

	d_{5}	d_{5}^{2}	d_{6}	d_{5}^{3}	$d_{5} \times d_{6}$	d_{7}	d_{5}^{4}	$d_{5}^{2} \times d_{6}$	d_{6}^{2}	$d_{5} \times d_{7}$	d_{8}
$d_{\leq 4}$ (bosonic)			\checkmark						\checkmark		\checkmark
$d_{\leq 4}$ (fermionic)			\checkmark						X		X
d_{5}	\checkmark				\checkmark	\checkmark					
d_{6} (bosonic)		\checkmark	\checkmark					X	\checkmark	X	\checkmark
d_{6} (fermionic)		\checkmark	\checkmark					X	X	X	X
d_{7}				\checkmark	\checkmark	\checkmark					
d_{8} (bosonic)							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
d_{8} (fermionic)							X	X	X	X	\checkmark

More generally, certain aspects of the full anomalous dimension matrix well understood

Craig, Jiang, Li, Sutherland; 2001.00017

8	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2} \\ & X_{L}^{2} \psi^{2} H \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4} \\ & X_{L} \psi^{2} H^{3}, \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2} \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2}, \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H, \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Murphy '20;

8	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2} \\ & X_{L}^{2} \psi^{2} H \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4} \\ & X_{L} \psi^{2} H^{3}, \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2}, \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2}, \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H, \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Murphy '20;

8	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2} \\ & X_{L}^{2} \psi^{2} H \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4}, \\ & X_{L} \psi^{2} H^{3}, \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D, \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2}, \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2}, \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H, \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Murphy '20;

It is obvious that there are zeros in mixing of specific operators of different classes

It is not so clear how to anticipate them, not even with amplitude methods

$$
\begin{aligned}
& \mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(1)}=i\left(\bar{e} \gamma^{\mu} D^{\nu} e\right)\left(D_{(\mu} D_{\nu)} \phi^{\dagger} \phi\right)+\text { h.c. } \\
& \mathcal{O}_{B_{e^{2} \phi^{2} D^{3} D^{2}}^{(1)}}^{(2)}=i\left(\bar{e} \gamma^{\mu} D^{\nu} e\right)\left(\phi^{\dagger} D_{(\mu} D_{\nu)} \phi\right)+\text { h.c. }
\end{aligned}
$$

$+\cdots$

$$
\begin{aligned}
& 2_{0}=\{41\rangle^{2}[31]^{1_{0}} \int_{2_{0}}^{1_{+1}}=\langle 43\rangle\langle 41\rangle[43][31] \\
& \gamma_{\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)} \rightarrow c_{B^{2} \phi^{2} D^{2}}^{(1)}} \propto \\
& \begin{array}{l:l}
3_{+1 / 2}^{\prime} & 3_{-1 / 2}^{\prime} \\
4_{-1 / 2}^{\prime} & 4_{+1 / 2}^{\prime} \\
S_{2} \sim_{4-1}^{3} \\
3_{+1}
\end{array} \\
& =\int d \operatorname{LIPS}\left\langle 4^{\prime} 3^{\prime}\right\rangle\left\langle 4^{\prime} 1\right\rangle\left[4^{\prime} 3^{\prime}\right]\left[3^{\prime} 1\right] \frac{\left\langle 3^{\prime} 4\right\rangle^{2}}{\left\langle 3^{\prime} 3\right\rangle\left\langle 34^{\prime}\right\rangle} \\
& =\int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 2} d \theta s_{\theta} c_{\theta}\left[\#_{1} e^{i \phi}+\#_{2} e^{2 i \phi}+\cdots\right]
\end{aligned}
$$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi ‘06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

But some others are not:

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

But some others are not:

$$
\widetilde{\mathcal{O}}_{e^{2} \phi^{2} D^{3}}^{(1)}=2_{2_{0}}^{1_{0}}=\langle 43\rangle\langle 41\rangle[43][31]
$$

"Therefore",

$$
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)}=\#_{1} \tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)}+\cdots \Rightarrow \#_{1}=0
$$

Other aspects of anomalous dimensions: signs and inequalities

Let us consider the mixing
Positivity bounds:

$$
\begin{gathered}
c_{\phi^{4}}^{(2)} \geq 0, \quad c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)} \geq 0, \quad c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}+c_{\phi^{4}}^{(3)} \geq 0 \\
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)} \geq 0
\end{gathered}
$$

From where we obtain:

$$
\begin{aligned}
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)} & =\alpha\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}+c_{\phi^{4}}^{(3)}\right)+\beta\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}\right)+\gamma c_{\phi^{4}}^{(2)}+\cdots \\
& =(\alpha+\beta) c_{\phi^{4}}^{(1)}+(\alpha+\beta+\gamma) c_{\phi^{4}}^{(2)}+\alpha c_{\phi^{4}}^{(3)}+\cdots,
\end{aligned}
$$

Other aspects of anomalous dimensions: signs and inequalities

$$
\begin{aligned}
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)} & =\alpha\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}+c_{\phi^{4}}^{(3)}\right)+\beta\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}\right)+\gamma c_{\phi^{4}}^{(2)}+\cdots \\
& =(\alpha+\beta) c_{\phi^{4}}^{(1)}+(\alpha+\beta+\gamma) c_{\phi^{4}}^{(2)}+\alpha c_{\phi^{4}}^{(3)}+\cdots,
\end{aligned}
$$

1. The anomalous dimensions are positive

$$
\begin{array}{lccc}
\hline & c_{\phi^{4} D^{4}}^{(1)} & c_{\phi^{4} D^{4}}^{(2)} & c_{\phi^{4} D^{4}}^{(3)} \\
c_{B^{2} \phi^{2} D^{2}}^{(1)} & + & + & +
\end{array}
$$

2. They fulfill

$$
\gamma_{c_{B^{2} \phi^{2} D^{2}}^{(1)}, c_{\phi^{4} D^{4}}^{(2)}} \geq \gamma_{c_{B^{2} \phi^{2} D^{2}}^{(1)}, c_{\phi^{4} D^{4}}^{(1)}} \geq \gamma_{c_{B^{2} \phi^{2} D^{2}}^{(1)}, c_{\phi^{4} D^{4}}^{(3)}}
$$

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e^{4} D^{2}}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	\times	\times	0	-	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e^{4} D^{2}}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \chi^{2} D^{2}}^{(1)}$	$\frac{g^{2}}{3}$	$\frac{g^{2}}{2}$	$\frac{g^{2}}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	\times	\times	0	-	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e^{4} D^{2}}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	$\frac{g^{2}}{3}$	$\frac{g^{2}}{2}$	$\frac{g^{2}}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	\times	\times	0	$-\frac{4\|Y\|^{2}}{3}$	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e^{4} D^{2}}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	$\frac{g^{2}}{3}$	$\frac{g^{2}}{2}$	$\frac{g^{2}}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	$g^{2}-\|Y\|^{2}$	\times	0	$-\frac{4\|Y\|^{2}}{3}$	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Can't we just compute all anomalous dimensions in some automated way?

Tools like matchmakereft or matchete not yet fully automatic [Carmona et al '21; Fuentes-Martin et al '22]

Main obstacles: Green's and physical bases [mc, DiazCarmona, Guedes '21; Ren, Yu '22; Fonseca]; field redefinitions [MC, Santiago]

EFT in UV

FeynRules QGRAF
FORM

EFT in IR

Tools like matchmakereft or matchete not yet fully automatic [Carmona et al '21; Fuentes-Martin et al '22]

Main obstacles: Green's and physical bases [mc, DiazCarmona, Guedes '21; Ren, Yu '22; Fonseca]; field redefinitions [MC, Santiago]
\longrightarrow input EFT

\longrightarrow input operator reduction
\longrightarrow input Physical basis

EFT in UV

FeynRules QGRAF
FORM

EFT in IR

Tools like matchmakereft or matchete not yet fully automatic [Carmona et al '21; Fuentes-Martin et al '22]

Main obstacles: Green's and physical bases [mc, DiazCarmona, Guedes ${ }^{2} 21$; Ren, Yu '22; Fonseca]; field redefinitions [MC, Santiago]

EFT in UV

EFT in IR

Tools like matchmakereft or matchete not yet fully automatic [Carmona et al '21; Fuentes-Martin et al '22]

Main obstacles: Green's and physical bases [mc, DiazCarmona, Guedes '21; Ren, Yu '22; Fonseca]; field redefinitions [MC, Santiago]
\longrightarrow input EFT

\longrightarrow input operator reduction
$\longrightarrow \quad$ input Physical basis

EFT in IR

Require Lagrangian with redundant operators to provide same S-matrix as that without them

Too many constraints on-shell. Solution: go numerics
Compute the amplitudes in different Montecarlo physical phase-space points. Problem reduced to linear algebra

Application to the purely Higgs sector [to appear in SMEFT-Tools 2022 proceedings]:

$$
\begin{align*}
c_{\phi \square} & \rightarrow c_{\phi \square}+\frac{1}{2} r_{\phi D}^{\prime}, \tag{22}\\
c_{\phi^{6}} & \rightarrow c_{\phi^{6}}+2 \lambda r_{\phi D}^{\prime}, \tag{23}\\
c_{\phi^{6} D^{2}}^{(1)} & \rightarrow c_{\phi^{6} D^{2}}^{(1)}+2 \lambda\left(2 r_{\phi^{4} D^{4}}^{(12)}-2 r_{\phi^{4} D^{4}}^{(4)}-r_{\phi^{4} D^{4}}^{(6)}\right) \\
& -4 c_{\phi \square} r_{\phi D}^{\prime}-\frac{1}{2} c_{\phi D} r_{\phi D}^{\prime}-\frac{7}{4} r_{\phi D}^{\prime 2}+r_{\phi D}^{\prime 2}, \\
c_{\phi^{6}}^{(2)} & \rightarrow c_{\phi^{6}}^{(2)}+2 \lambda\left(r_{\phi^{4} D^{4}}^{(12)}-r_{\phi^{4} D^{4}}^{(6)}\right)-c_{\phi D} r_{\phi D}^{\prime} .
\end{align*}
$$

Outlook

Positivity bounds on dimension-8 interactions (which are important/interesting by themselves) restrict different aspects of (certain) anomalous dimensions (zeros, signs, inequalities).

Further applications include full SMEFT [mc, Li ‘ongoing work], LEFT and other EFTs.

Renormalising fully the SMEFT to dimension 8 is a heavy task, but which can be automatised.

Outlook

Positivity bounds on dimension-8 interactions (which are important/interesting by themselves) restrict different aspects of (certain) anomalous dimensions (zeros, signs, inequalities).

Further applications include full SMEFT [mc, Li ‘ongoing work], LEFT and other EFTs.

Renormalising fully the SMEFT to dimension 8 is a heavy task, but which can be automatised.

> Thank you:

Backup

1. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} D^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
2. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
3. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

4. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
5. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

6. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} D^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
7. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

\[

\]

So $\beta_{8} \leq 0$ in any of the aforementioned UV, and therefore for all values of $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with $c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0$
3. The beta function is linear in the Wilson coefficients:

$$
\beta_{8}=\alpha\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)}\right), \quad \alpha \geq 0
$$

Therefore,

$$
\underbrace{\mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(1)}-\mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(2)}}_{\widetilde{\mathcal{O}}_{e^{2} \phi^{2} D^{3}}^{(1)}} \longrightarrow \mathcal{O}_{B^{2} \phi^{2} D^{2}}^{(1)}
$$

How do things change if we consider instead...?

1. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
2. Within any such UV, compute
to order $\mathrm{O}\left(g^{2}\right)$

3. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
4. Within any such UV, compute
to order $\mathrm{O}\left(g^{2}\right)$

