

Recent CKM results from the LHC

Prof. Steven Blusk Syracuse University

Introduction

- The **Standard Model** remarkably successful at describing the **particles of nature** and the **forces between them**.
- But, it cannot be the end of the line.
 - Dark matter ?

. . .

- BAU (Baryon Asymmetry in the Universe)
- Hierarchy problem
- Explanation of family structure, and masses

Fermion masses

Complementary approaches

• Worldwide push to **uncover "New Physics"**.

Complementary approaches

• Worldwide push to **uncover "New Physics"**.

Complementary approaches

• Worldwide push to **uncover "New Physics".**

 $B \rightarrow K \pi \mu \mu$ $\frac{C_{NP}}{\Lambda^2_{NP}}$ << GF $B_s \rightarrow \mu \mu$ B→TI cf) $K \rightarrow \pi \gamma \gamma$ dire Kaon mixing D mixing Θ Ť µ→ey D Q U $\mu \rightarrow e$ conversion electron EDM neutron EDM M_H 10 1000 10⁵ Altmannshofer, New Physics scale Λ_{NP} (TeV) Assuming $C_{NP} = 1$ Aspen 2014 (but could be << 1)

- Indirect precision measurements complementary to direct detection.
 - Even if $\Lambda_{NP} > E_{LHC}$ (can't produce directly), NP particles can appear in **quantum loops**,

CKM matrix connects **weak interaction eigenstates** to the **mass eigenstates**:

 \Box 3 x 3 unitary transformation \rightarrow 4 free parameters

CKM matrix connects **weak interaction eigenstates** to the **mass eigenstates**:

 \Box 3 x 3 unitary transformation \rightarrow 4 free parameters

$$W \sim V_{ij} = V_{CKM} \begin{pmatrix} d \\ s \\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b' \end{pmatrix}$$

$$V_{CKM} \cong \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & |V_{ub}|e^{-i\gamma} \\ V_{cd} & V_{cs} & V_{cb} \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & V_{tb} \end{pmatrix} + O(\lambda^4)$$

$$A \sim 0.8 \\ \lambda = \sin\theta_c \equiv 0.22$$

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \quad \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$
$$\beta_s = \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

CKM matrix connects **weak interaction eigenstates** to the **mass eigenstates**:

 \Box 3 x 3 unitary transformation \rightarrow 4 free parameters

 Direct consequence of the non-diagonal nature of Higgs-Yukawa couplings to the quarks

 $\square \eta \neq 0 \rightarrow$ Violation of **CP**

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \quad \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$
$$\beta_s = \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

CKM matrix connects **weak interaction eigenstates** to the **mass eigenstates**:

 \Box 3 x 3 unitary transformation \rightarrow 4 free parameters

 Direct consequence of the non-diagonal nature of Higgs-Yukawa couplings to the quarks

 $\square \eta \neq 0 \rightarrow$ Violation of **CP**

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \quad \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$
$$\beta_s = \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

CKM matrix connects **weak interaction eigenstates** to the **mass eigenstates**:

 \Box 3 x 3 unitary transformation \rightarrow 4 free parameters

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{te} & V_{tb} \end{pmatrix}$ ♦ Unitarity of V_{CKM} → Triangles in complex plane (5 others, incl. one for B_s decays)

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \implies R_{b} + R_{t} - 1 = 0 \qquad R_{b} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \qquad R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$

♦ Unitarity of V_{CKM} → Triangles in complex plane (5 others, incl. one for B_s decays) $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{ub} & V_{ub} \\ V_{ub} & V_{ub} & V_{ub} & V_{ub} & V_{ub} \\ V_{ub} & V_{ub} & V_{ub} & V_{ub} & V_{ub} \\ V_{ub} & V_{ub} & V_{ub} & V$

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \implies R_{b} + R_{t} - 1 = 0 \qquad R_{b} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \qquad R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$

♦ Unitarity of V_{CKM} → Triangles in complex plane (5 others, incl. one for B_s decays) $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{ub} & V_{ub} \\ V_{ub} & V_{ub} & V_{ub} & V_{ub} & V_{ub} \\ V_{ub} & V_{ub} & V_{ub} & V_{ub} & V_{ub} \\ V_{ub} & V_{ub} & V_{ub} & V$

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \implies R_{b} + R_{t} - 1 = 0 \qquad R_{b} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \qquad R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$

♦ Unitarity of V_{CKM} → Triangles in complex plane (5 others, incl. one for B_s decays) $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ub} & V_{ub} & V_{ub} \end{pmatrix}$

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \implies R_{b} + R_{t} - 1 = 0 \qquad R_{b} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \qquad R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$

LOOP

"bd" Unitarity triangle: Sides ♦ Unitarity of V_{CKM} → Triangles in complex plane (5 others, incl. one for B_s decays) $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ub} & V_{ub} & V_{ub} \end{pmatrix}$ $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \implies R_{b} + R_{t} - 1 = 0 \qquad R_{b} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \qquad R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$ Vqb $(\overline{\rho},\overline{\eta})$ Re Veav B $\begin{aligned} R_b &= \sqrt{\bar{\rho}^2 + \bar{\eta}^2} \\ \propto \frac{\Gamma(b \to u\ell\nu)}{\Gamma(b \to c\ell\nu)} \propto \left| \frac{V_{ub}}{V_{cb}} \right|^2 \end{aligned}$ $\begin{bmatrix} R_t = \sqrt{(1-\bar{\rho})^2 + \bar{\eta}^2} \\ \propto \left| \frac{\Delta m_d}{\Lambda m_c} \right| \propto \left| \frac{V_{td}}{V_{ts}} \right|^2$ (0,0) (1,0)

LOOP

"bd" Unitarity triangle: Sides \Rightarrow Unitarity of $V_{CKM} \rightarrow$ Triangles in complex plane (5 others, incl. one for B_s decays) $\begin{pmatrix} V_{ud} & V_{us} \\ V_{us} & V_{us} \\ V_{us$

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \implies R_{b} + R_{t} - 1 = 0 \qquad R_{b} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \qquad R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$

LOOP

'bd' Unitarity triangle: Angles

□ Interference between two amplitudes that have different weak and strong phases. □ $ACP = \Gamma(B \rightarrow f) - \overline{\Gamma}(\overline{B} \rightarrow \overline{f})$

 $\Box A_f^{CP} = \frac{\Gamma(B \to f) - \overline{\Gamma} (\overline{B} \to \overline{f})}{\Gamma(B \to f) + \overline{\Gamma}(\overline{B} \to \overline{f})} \text{ exposes weak phase!}$

'bd' Unitarity triangle: Angles

□ Interference between two amplitudes that have different weak and strong phases.

 $\Box A_f^{CP} = \frac{\Gamma(B \to f) - \overline{\Gamma} (\overline{B} \to \overline{f})}{\Gamma(B \to f) + \overline{\Gamma}(\overline{B} \to \overline{f})} \text{ exposes weak phase!}$

'bd' Unitarity triangle: Angles

□ Interference between two amplitudes that have different weak and strong phases.

 $\Box A_f^{CP} = \frac{\Gamma(B \to f) - \overline{\Gamma} (\overline{B} \to \overline{f})}{\Gamma(B \to f) + \overline{\Gamma}(\overline{B} \to \overline{f})} \text{ exposes weak phase!}$

'bd' Unitarity triangle: Summary

'bd' Unitarity triangle: Summary

Recent CKM measurements from the LHC (since 2021)

γ	V_{ub} / V_{cb}	Δm_s	$sin(2\beta)$		$\sin(2\beta_s)$	
LHCb	LHCb	LHCb	LHCb	LHCb	CMS	ATLAS
$B^{\pm} \rightarrow D(\gamma, \pi^{0})_{D^{*}}h^{\pm},$ $D \rightarrow K_{S}^{0}h^{+}h^{-}$	$B_{\rm S} o K^- \mu^+ u_\mu$ PRL 126, 081804 (2021)	$B_s \rightarrow D_s^+ \pi^-$ Nature Physics 18 (2022)	$B^0 ightarrow \psi(\ell^+\ell^-)K_S^0$ LHCb-PAPER-2023-013	$B_s^0 \rightarrow J/\psi (K^+K^-)_\phi$ LHCb-PAPER-2023-013	$B_s^0 \to J/\psi (K^+K^-)_\phi$ PLB 816, 136188 (2021)	$B_s^0 \to J/\psi (K^+K^-)_\phi$ EPJ C81, 342 (2021)
$B^0 \rightarrow [K_S^0 h^+ h^-] (K^+ \pi^-)_{K^*}$ I HCb-PAPER-2023-009						V _{tb}
$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-}]h^{\pm}$						ATLAS
$B^{\pm} \rightarrow [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]h^{\pm}$ arXiv:2301.10328						<i>Single top</i> ATLAS-CONF-2023-026
$B^{\pm} \rightarrow \begin{bmatrix} K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp} \end{bmatrix} h^{\pm}$ arXiv:2209.03692						
$B^{\pm} ightarrow igh[h^{\pm}h'^{\mp}\pi^0ig]h^{\pm}$ JHEP 07, 99 (2022)	 No way to cover all of this, apologies! Many CKM measurements pre-2021, see public pages: LHCb, CMS, ATLAS 					
LHCb γ combination JHEP 12, 141 (2021)						
$B^{\pm} ightarrow D^{(*)} h^{\pm}, D ightarrow h^{\pm} h'^{\mp}$ JHEP 04, 081 (2021)						
$B_s ightarrow D_s^\pm h^\pm \pi^\pm \pi^\mp$, JHEP 03, 137 (2021)						
$B^{\pm} \rightarrow [K_S^0 h^+ h^-] h^{\pm}$ JHEP 02, 169 (2021)						0

Recent CKM measurements from the LHC (since 2021)

Weak phase γ

□ "B→DK" represents a **full class of decays**: □ f_D must be accessible to both D^0 and \overline{D}^0 .

	Modes, f_D	
ADS	$\mathrm{D}^{0} \rightarrow \mathrm{K}^{-}\pi^{+}, \mathrm{K}^{+}\pi^{-}$	
GLW	$D^0 \rightarrow K^- K^+, \pi^+ \pi^-$	
GGSZ	$K_{S}^{0}\pi^{+}\pi^{-}$, $K_{S}^{0}K^{+}K^{-}$	
Multi-body + other variants!		

	LHCb γ combination, <u>JHEP 12 (2021</u>		
	B decay	D decay	
	f_{I}	D	
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	
₿±	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	
	$B^\pm \to D h^\pm$	$D \to K_{\rm S}^{0} K^{\pm} \pi^{\mp}$	
	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ h^-$	
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \to h^+ h^-$	
	$B^0 \to DK^{*0}$	$D \to h^+ h^-$	
	$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	
B_{0}	$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	
R	$\int B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	
D _s ≺	$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	

Many decays used in LHCb, including B^0 and B_s decays (time-dependent analysis req'd) 10

□ "B→DK" represents a **full class of decays**: □ f_D must be accessible to both D^0 and \overline{D}^0 .

	Modes, f_D	
ADS	$D^0 ightarrow K^- \pi^+$, $K^+ \pi^-$	
GLW	$D^0 \rightarrow K^- K^+, \pi^+ \pi^-$	
GGSZ	$K_{S}^{0}\pi^{+}\pi^{-}$, $K_{S}^{0}K^{+}K^{-}$	
Multi-body + other variants!		

 $\Box \ \Gamma (B^{\mp} \to \{f_D \ h^{\mp}\}_X) \text{ depends on properties of } \mathbf{B} \text{ decay and } \mathbf{D} \text{ decay. For example}$ $\Gamma (B^{\mp} \to \{f_D \ h^{\mp}\}_X) \propto \qquad [(r_D^f)^2 + (r_B^X)^2 + 2r_D^f \ r_B^X \cos(\delta_B^X + \delta_D^f \mp \gamma)] \qquad \begin{array}{l} \mathbf{DCS} \ f_D = \mathbf{K}^{\pm} \pi^{\mp} \\ \mathbf{GLW} \ (r_D^f = 1) \end{array}$

	B decay	D decay
	f_{I}	D
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$
B±	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$
	$B^\pm \to D h^\pm$	$D \rightarrow K_{\rm S}^0 h^+ h^-$
	$B^\pm \to D h^\pm$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$
	$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^+ h^-$
	$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^{\pm} ightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$
	$B^0 \to DK^{*0}$	$D ightarrow h^+ h^-$
B0	$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^0 ightarrow DK^{*0}$	$D \to K^0_{\rm S} \pi^+ \pi^-$
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$
B	$\int B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$
D _s	$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$

Many decays used in LHCb, including B^0 and B_s decays (time-dependent analysis req'd) 10

LHCb γ combination, JHEP 12 (2021)

□ "B→DK" represents a **full class of decays**: □ f_D must be accessible to both D^0 and \overline{D}^0 .

	Modes, f_D	
ADS	$D^0 \rightarrow K^- \pi^+$, $K^+ \pi^-$	
GLW	$D^0 \rightarrow K^- K^+, \pi^+ \pi^-$	
GGSZ	$K_{S}^{0}\pi^{+}\pi^{-}$, $K_{S}^{0}K^{+}K^{-}$	
Multi-body + other variants!		

 $\Box \ \Gamma (B^{\mp} \to \{f_D \ h^{\mp}\}_X) \text{ depends on properties of } \mathbf{B} \text{ decay and } \mathbf{D} \text{ decay. For example}$ $\Gamma (B^{\mp} \to \{f_D \ h^{\mp}\}_X) \propto [(r_D^f)^2 + (r_B^X)^2 + 2r_D^f \ r_B^X \cos(\delta_B^X + \delta_D^f \mp \gamma)] \qquad \begin{array}{l} \mathbf{DCS} \ f_D = \mathbf{K}^{\pm} \pi^{\mp} \\ \mathbf{GLW} \ (r_D^f = 1) \end{array}$

□ In **multi-body D decays**, *e.g.* GGSZ, (r_D^f, δ_D^f) vary across the phase space. Integrating over full phase space dilutes sensitivity to γ .

Often, independent amplitude analysis used to **bin D phase space** to maximize sensitivity to γ

LHCb y combination, JHEP 12 (2021)

	B decay	D decay
	f_{l})
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$
	$B^\pm \to D h^\pm$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D\to K^\pm\pi^\mp\pi^+\pi^-$
	$B^\pm \to D h^\pm$	$D \to h^+ h^- \pi^0$
B [±]	$B^\pm \to D h^\pm$	$D \rightarrow K^0_{ m S} h^+ h^-$
	$B^\pm \to D h^\pm$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$
	$B^\pm \to D^* h^\pm$	$D \to h^+ h^-$
	$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$
	$B^\pm \to D K^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$
	$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$
	$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$
$\mathbf{R}_{0\prec}$	$B^0 ightarrow DK^{*0}$	$D \to K^0_{\rm S} \pi^+ \pi^-$
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$
R	$\int B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$
D_{s}	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$

Many decays used in LHCb, including B^0 and B_s decays (time-dependent analysis req'd) 10

□ "B→DK" represents a **full class of decays**: □ f_D must be accessible to both D^0 and \overline{D}^0 .

	Modes, f_D	
ADS	$D^0 \rightarrow K^- \pi^+$, $K^+ \pi^-$	
GLW	$D^0 \rightarrow K^- K^+, \pi^+ \pi^-$	
GGSZ	$K_{S}^{0}\pi^{+}\pi^{-}$, $K_{S}^{0}K^{+}K^{-}$	
Multi-body + other variants!		

 $\Box \ \Gamma (B^{\mp} \to \{f_D \ h^{\mp}\}_X) \text{ depends on properties of } \mathbf{B} \text{ decay and } \mathbf{D} \text{ decay. For example}$ $\Gamma (B^{\mp} \to \{f_D \ h^{\mp}\}_X) \propto [(r_D^f)^2 + (r_B^X)^2 + 2r_D^f \ r_B^X \cos(\delta_B^X + \delta_D^f \mp \gamma)] \qquad \begin{array}{l} \mathbf{DCS} \ f_D = \mathbf{K}^{\pm} \pi^{\mp} \\ \mathbf{GLW} \ (r_D^f = 1) \end{array}$

□ In **multi-body D decays**, *e.g.* GGSZ, (r_D^f, δ_D^f) vary across the phase space. Integrating over full phase space dilutes sensitivity to γ .

Often, independent amplitude analysis used to **bin D phase space** to maximize sensitivity to γ

Bottom line: Each analysis has a number of CP observables that are sensitive to the B, D decay parameters, and γ .

LHCb y combination, JHEP 12 (2021)

	B decay	D decay
	f_l	D
	$CB^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D\to K^\pm\pi^\mp\pi^+\pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$
₿±	$B^\pm \to D h^\pm$	$D \rightarrow K_{\rm S}^0 h^+ h^-$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$
	$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^+ h^-$
	$B^\pm \to D K^{*\pm}$	$D ightarrow h^+ h^-$
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$
	$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$
D 0 /	$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$
$\mathbf{R}_{0\prec}$	$B^0 \to DK^{*0}$	$D \to K^0_{\rm S} \pi^+ \pi^-$
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$
B.	$(B_s^0 \to D_s^{\mp} K^{\pm})$	$D_s^+ \to h^+ h^- \pi^+$
D _s	$B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$

Many decays used in LHCb, including B^0 and B_s decays (time-dependent analysis req'd) 10

LHCb, <u>arXiv:2301.10328</u>

Gamma measurement in

$$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-}]_{D}\{K^{\pm},\pi^{\pm}\}$$

and
 $B^{\pm} \rightarrow [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\{K^{\pm},\pi^{\pm}\}$
decays

$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{\mathrm{D}} \{K^{\pm},\pi^{\pm}\}$ [1]

LHCb, arXiv:2301.10328

□ Four-body self-conjugate mode

 $\mathcal{A}_{B^-} = A_{B^-} \left[A_{D^0}(\Phi) + r_B \ e^{i \left(\delta_B - \gamma \right)} A_{\overline{D}^0}(\Phi) \right]$

 $\Phi=\text{position}$ in 5D phase space (PS) of D decay

[1] LHCb, JHEP 02, 126 (2019) **12**

$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{\mathrm{D}} \{K^{\pm},\pi^{\pm}\}$ [1]

LHCb, <u>arXiv:2301.10328</u>

□ Four-body self-conjugate mode

$$\mathcal{A}_{B^-} = A_{B^-} \left[A_{D^0}(\Phi) + r_B \ e^{i\left(\delta_B - \gamma\right)} A_{\overline{D}^0}(\Phi) \right]$$

 $\Phi = \text{position in 5D phase space (PS) of D decay}$

 \Box Yields of B^+ , B^- in a phase space bin *i*:

$$B^{+} \rightarrow f_{D}K^{+}: \quad N_{+i}^{+} = h_{B^{+}} \left[F_{-i} + \left((x_{+})^{2} + (y_{+})^{2} \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{+}c_{i} - y_{+}s_{i}) \right]$$

$$B^{-} \rightarrow f_{D}K^{-}: \quad N_{-i}^{-} = h_{B^{-}} \left[F_{-i} + \left((x_{-})^{2} + (y_{-})^{2} \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{-}c_{i} - y_{-}s_{i}) \right]$$

$$\{c_{i}, s_{i}\} = \frac{\int_{i}^{i} d\Phi |A_{D^{0}}|^{2} \int_{i}^{i} d\Phi |A_{D^{0}}|^{2}}{\sqrt{\int_{i}^{i} d\Phi |A_{D^{0}}|^{2} \int_{i}^{i} d\Phi |A_{D^{0}}|^{2}}$$
$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{\mathrm{D}} \{K^{\pm},\pi^{\pm}\}$ [1]

LHCb, <u>arXiv:2301.10328</u>

□ Four-body self-conjugate mode

$$\mathcal{A}_{B^-} = A_{B^-} \left[A_{D^0}(\Phi) + r_B \ e^{i\left(\delta_B - \gamma\right)} A_{\overline{D}^0}(\Phi) \right]$$

 $\Phi = \text{position in 5D phase space (PS) of D decay}$

 \Box Yields of B^+ , B^- in a phase space bin *i*:

$$B^{+} \to f_{D}K^{+}: \quad N_{+i}^{+} = h_{B^{+}} \left[F_{-i} + \left((x_{+})^{2} + (y_{+})^{2} \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{+}c_{i} - y_{+}s_{i}) \right]$$

$$B^{-} \to f_{D}K^{-}: \quad N_{-i}^{-} = h_{B^{-}} \left[F_{-i} + \left((x_{-})^{2} + (y_{-})^{2} \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{-}c_{i} - y_{-}s_{i}) \right]$$

□ Use indep. D⁰ amplitude fit^[1] to $B^- \rightarrow [K^+K^-\pi^+\pi^-]_D \mu^-\nu X$ to optimize binning for max sensitivity to γ and obtain c_i , s_i and F_i

 $\begin{cases} x_{\pm} = r_B \cos(\delta_B \pm \gamma) \\ y_{\pm} = r_B \sin(\delta_B \pm \gamma) \\ \{c_i, s_i\} \equiv \frac{\int_i d\Phi |A_{D^0}| |A_{\overline{D}^0}| \{\cos \Delta \delta_D, \sin \Delta \delta_D\}}{\sqrt{\int_i d\Phi |A_{\overline{D}^0}|^2 \int_i d\Phi |A_{D^0}|^2}} \end{cases}$

$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{\mathrm{D}} \{K^{\pm},\pi^{\pm}\}$ [1]

LHCb, <u>arXiv:2301.10328</u>

□ Four-body self-conjugate mode

$$\mathcal{A}_{B^-} = A_{B^-} \left[A_{D^0}(\Phi) + r_B \ e^{i\left(\delta_B - \gamma\right)} A_{\overline{D}^0}(\Phi) \right]$$

 $\Phi = \text{position in 5D phase space (PS) of D decay}$

□ Yields of B^+ , B^- in a phase space bin *i*:

$$B^{+} \to f_{D}K^{+}: \quad N_{+i}^{+} = h_{B^{+}} \left[F_{-i} + \left((x_{+})^{2} + (y_{+})^{2} \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{+}c_{i} - y_{+}s_{i}) \right]$$

$$B^{-} \to f_{D}K^{-}: \quad N_{-i}^{-} = h_{B^{-}} \left[F_{-i} + \left((x_{-})^{2} + (y_{-})^{2} \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{-}c_{i} - y_{-}s_{i}) \right]$$

□ Use indep. D⁰ amplitude fit^[1] to $B^- \rightarrow [K^+K^-\pi^+\pi^-]_D \mu^-\nu X$ to optimize binning for max sensitivity to γ and obtain c_i , s_i and F_i

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

$$\{c_i, s_i\} \equiv \frac{\int_i d\Phi |A_{D^0}| |A_{\overline{D}^0}| \{\cos \Delta \delta_D, \sin \Delta \delta_D\}}{\sqrt{\int_i d\Phi |A_{\overline{D}^0}|^2 \int_i d\Phi |A_{D^0}|^2}}$$

[1] LHCb, JHEP 02, 126 (2019) 12

$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{\mathrm{D}} \{K^{\pm},\pi^{\pm}\}$ [1]

□ Four-body self-conjugate mode

$$\mathcal{A}_{B^-} = A_{B^-} \left[A_{D^0}(\Phi) + r_B \ e^{i\left(\delta_B - \gamma\right)} A_{\overline{D}^0}(\Phi) \right]$$

 $\Phi = \text{position in 5D phase space (PS) of D decay}$

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

$$\{c_i, s_i\} \equiv \frac{\int_i d\Phi |A_{D^0}| |A_{\overline{D}^0}| \{\cos \Delta \delta_D, \sin \Delta \delta_D\}}{\sqrt{\int_i d\Phi |A_{\overline{D}^0}|^2 \int_i d\Phi |A_{D^0}|^2}}$$

 $B^+ \to f_D K^+: \quad N_{+i}^+ = h_{B^+} \left[F_{-i} + \left((x_+)^2 + (y_+)^2 \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_+c_i - y_+s_i) \right]$

 \Box Yields of B^+ , B^- in a phase space bin *i*:

$$B^- \to f_D K^-$$
: $N^-_{-i} = h_{B^-} \left[F_{-i} + \left((x_-)^2 + (y_-)^2 \right) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_-c_i - y_-s_i) \right]$

□ Use indep. D⁰ amplitude fit^[1] to $B^- \rightarrow [K^+K^-\pi^+\pi^-]_D \mu^-\nu X$ to optimize binning for max sensitivity to γ and obtain c_i , s_i and F_i

LHCb, <u>arXiv:2301.10328</u>

$$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{\mathrm{D}} \{K^{\pm},\pi^{\pm}\}$$
 [2]

□ Fit also includes CPV observables based on integrated yields

$$A_{h}^{KK\pi\pi} = \frac{\Gamma(B^{-} \to Dh^{-}) - \Gamma(B^{+} \to Dh^{+})}{\Gamma(B^{-} \to Dh^{-}) + \Gamma(B^{+} \to Dh^{+})} = \frac{2r_{B}^{Dh}\kappa\sin(\delta_{B}^{Dh})\sin\gamma}{1 + (r_{B}^{Dh})^{2} + 2r_{B}^{Dh}\kappa\cos(\delta_{B}^{Dh})\cos\gamma} \qquad h = K, \pi$$

$$R_{CP}^{KK\pi\pi} = \frac{R_{KK\pi\pi}}{R_{K\pi\pi\pi}} = 1 + (r_{B}^{DK})^{2} + 2r_{B}^{DK}\kappa\cos(\delta_{B}^{DK})\cos\gamma, \qquad R_{f} = \frac{\Gamma(B^{-} \to f_{D}K^{-}) + \Gamma(B^{+} \to f_{D}K^{+})}{\Gamma(B^{-} \to f_{D}\pi^{-}) + \Gamma(B^{+} \to f_{D}\pi^{+})}$$

$$\square \kappa = 2F_{CP+} - 1 = \text{dilution from integration over PS}^{[2]}$$

$$\square \text{ Similar expression for } D \to \pi^{+}\pi^{-}\pi^{+}\pi^{-}$$

[2] LHCb, arXiv:2209.03692, LHCb, PLB 747 (2015)

$$B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D} \{K^{\pm},\pi^{\pm}\} [2]$$

$$[HCb, arXiv:2301$$

$$Fit also includes CPV observables based on integrated yields
$$A_{h}^{KK\pi\pi} = \frac{\Gamma(B^{-} \rightarrow Dh^{-}) - \Gamma(B^{+} \rightarrow Dh^{+})}{\Gamma(B^{-} \rightarrow Dh^{-}) + \Gamma(B^{+} \rightarrow Dh^{+})} = \frac{2r_{B}^{Dh}\kappa\sin(\delta_{B}^{Dh})\sin\gamma}{1 + (r_{B}^{Dh})^{2} + 2r_{B}^{Dh}\kappa\cos(\delta_{B}^{Dh})\cos\gamma} \qquad h = K,\pi$$

$$R_{CP}^{KK\pi\pi} = \frac{R_{KK\pi\pi}}{R_{K\pi\pi\pi}} = 1 + (r_{B}^{DK})^{2} + 2r_{B}^{DK}\kappa\cos(\delta_{B}^{DK})\cos\gamma, \qquad R_{f} = \frac{\Gamma(B^{-} \rightarrow f_{D}K^{-}) + \Gamma(B^{+} \rightarrow f_{D}K^{+})}{\Gamma(B^{-} \rightarrow f_{D}\pi^{-}) + \Gamma(B^{+} \rightarrow f_{D}\pi^{+})}$$

$$\Box \kappa = 2F_{CP+} - 1 = \text{ dilution from integration over PS}^{[2]}$$

$$\Box \text{ Similar expression for } D \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$$$$

CPV observable	Fit results $(K^+K^-\pi^+\pi^-)$
$A_K^{KK\pi\pi}$	(9.3 ± 2.3 ± 0.2)%
$R_{CP}^{KK\pi\pi}$	$0.974 \pm 0.024 \pm 0.015$
$A_{\pi}^{KK\pi\pi}$	$(-0.9 \pm 0.6 \pm 0.1)\%$
CPV observable	Fit results $(\pi^+\pi^-\pi^+\pi^-)$
CPV observable $A_K^{\pi\pi\pi\pi}$	Fit results $(\pi^+\pi^-\pi^+\pi^-)$ (6.0 ± 1.3 ± 0.1)%
CPV observable $A_{K}^{\pi\pi\pi\pi}$ $R_{CP}^{\pi\pi\pi\pi\pi}$	Fit results $(\pi^+\pi^-\pi^+\pi^-)$ (6.0 ± 1.3 ± 0.1)% 0.978 ± 0.014 ± 0.010

[2] LHCb, arXiv:2209.03692, LHCb, PLB 747 (2015)

Fit for CP Observables [3]

LHCb, <u>arXiv:2301.10328</u>

$$\begin{array}{c} \square \text{ Fit for best } (x_{\pm}^{DK}, y_{\pm}^{DK}) \text{ given} \\ \text{ the observed yields in each bin } i. \end{array} \begin{array}{c} N_{+i}^{+}(x_{\pm}^{DK}, y_{\pm}^{DK}) = h_{B^{+}}[F_{-i} + ((x_{\pm}^{DK})^{2} + (y_{\pm}^{DK})^{2})F_{+i} + 2\sqrt{F_{+i}F_{-i}}(x_{\pm}^{DK}c_{i} - y_{\pm}^{DK}s_{i})] \\ N_{-i}^{-}(x_{\pm}^{DK}, y_{\pm}^{DK}) = h_{B^{-}}[F_{-i} + ((x_{\pm}^{DK})^{2} + (y_{\pm}^{DK})^{2})F_{+i} + 2\sqrt{F_{+i}F_{-i}}(x_{\pm}^{DK}c_{i} - y_{\pm}^{DK}s_{i})] \\ y_{\pm}^{DK} = r_{B}^{DK}\cos(\delta_{B}^{DK} \pm \gamma) \\ y_{\pm}^{DK} = r_{B}^{DK}\sin(\delta_{B}^{DK} \pm \gamma) \\ y_{\pm}^{DK}\sin(\delta_{B}^{DK} \pm \gamma) \\$$

Fit for CP Observables [3]

Fit for CP Observables [3]

LHCb, arXiv:2301.10328

Model-dependent result $\gamma = (116^{+12}_{-14})^{o}$

□ Future: Model independent analysis; BES III can measure directly the c_i, s_i using quantum-correlated $D\overline{D}$ pairs 14

Overall LHCb γ combination + fit for D mixing parameters

 $\Box \text{ Including D mixing important in } B^{\pm} \to D\pi^{\pm}, \text{ where } x, y \sim r_B.$ $\Gamma_{\text{w D mix}}(B^{\pm} \to Dh^{\pm}) \propto \Gamma_{\text{no D mix}} + \Delta\Gamma_{\text{D mix}}$ $\Gamma_{\text{no D mix}}(B^{\pm} \to Dh^{\pm}) \propto r_D^2 + r_B^2 + 2\kappa_D\kappa_Br_Dr_B\cos(\delta_B + \delta_D \pm \gamma)$ $\Delta\Gamma_{\text{D mix}} = -\alpha[(1 + r_B^2)\kappa_Dr_D\cos(\delta_D) + (1 + r_D^2)\kappa_Br_B\cos(\delta_B \pm \gamma)]\mathbf{y}$ $+\alpha[(1 - r_B^2)\kappa_Dr_D\sin(\delta_D) - (1 - r_D^2)\kappa_Br_B\sin(\delta_B \pm \gamma)]\mathbf{x}$

LHCb, JHEP 12, 141 (2021)

	B decay	D decay	Ref.	Dataset	Status since
					Ref. [17]
($B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	[20]	Run 1&2	Updated
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	[21]	Run 1	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[22]	Run 1	As before
_ 1	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^0_S h^+ h^-$	[19]	Run $1\&2$	Updated
B≖≺	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{s}^{0}K^{\pm}\pi^{\mp}$	[23]	Run 1&2	Updated
	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^{+}h^{-}$	[20]	Run 1&2	Updated
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	[24]	Run $1\&2(*)$	As before
	$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	[24]	Run $1\&2(*)$	As before
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	[25]	Run 1	As before
($B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	[26]	Run $1\&2(*)$	Updated
	$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	[26]	Run $1\&2(*)$	New
B	$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[27]	Run 1	As before
($B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[28]	Run 1	As before
D	$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[29]	Run 1	As before
\mathbf{D}_{s}	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[30]	Run 1&2	New
	D decay	Observable(s)	Ref.	Dataset	Status since
					Ref. [17]
	$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[31, 32, 33]	Run 1&2	New
	$D^0 \rightarrow h^+ h^-$	y_{CP}	[34]	$\operatorname{Run} 1$	New
	$D^0 \rightarrow h^+ h^-$	ΔY	[35, 36, 37, 38]	Run $1\&2$	New
	$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[39]	Run 1	New
	$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[40]	Run $1\&2(*)$	New
	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[41]	Run 1	New
	$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	x, y	[42]	$\operatorname{Run} 1$	\mathbf{New}
	$D^0 \rightarrow K_{\rm S}^{\bar 0} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[43]	$\operatorname{Run} 1$	New
	$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[44]	Run 2	New

Overall LHCb γ combination + fit for D mixing parameters

 $\Box \text{ Including D mixing important in } B^{\pm} \to D\pi^{\pm}, \text{ where } x, y \sim r_B.$ $\Gamma_{w \text{ D mix}}(B^{\pm} \to Dh^{\pm}) \propto \Gamma_{\text{no D mix}} + \Delta\Gamma_{\text{D mix}}$ $\Gamma_{\text{no D mix}}(B^{\pm} \to Dh^{\pm}) \propto r_D^2 + r_B^2 + 2\kappa_D\kappa_Br_Dr_B\cos(\delta_B + \delta_D \pm \gamma)$ $\Delta\Gamma_{\text{D mix}} = -\alpha[(1 + r_B^2)\kappa_Dr_D\cos(\delta_D) + (1 + r_D^2)\kappa_Br_B\cos(\delta_B \pm \gamma)]\mathbf{y}$ $+\alpha[(1 - r_B^2)\kappa_Dr_D\sin(\delta_D) - (1 - r_D^2)\kappa_Br_B\sin(\delta_B \pm \gamma)]\mathbf{x}$

□ Most precise single experiment measurement

LHCb, JHEP 12, 141 (2021)

	B decay	D decay	Ref.	Dataset	Status since
					Ref. [17]
($B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^-$	[20]	Run 1&2	Updated
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+\pi^-\pi^+\pi^-$	[21]	Run 1	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	[22]	Run 1	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[19]	Run 1&2	Updated
B±≺	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	[23]	Run 1&2	Updated
_	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^{+}h^{-}$	[20]	Run 1&2	Updated
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	[24]	Run $1\&2(*)$	As before
	$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	[24]	Run $1\&2(*)$	As before
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	[25]	Run 1	As before
($B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	[26]	Run $1\&2(*)$	Updated
	$B^0 \rightarrow DK^{*0}$	$D \to h^+\pi^-\pi^+\pi^-$	[26]	Run $1\&2(*)$	New
D	$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[27]	Run 1	As before
l	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[28]	$\operatorname{Run} 1$	As before
D	$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[29]	Run 1	As before
D _S	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[30]	Run $1\&2$	New
	D decay	Observable(s)	Ref.	Dataset	Status since
					Ref. [17]
	$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[31, 32, 33]	Run 1&2	New
	$D^0 \rightarrow h^+ h^-$	y_{CP}	[34]	$\operatorname{Run} 1$	New
	$D^0 \rightarrow h^+ h^-$	ΔY	[35, 36, 37, 38]	Run $1\&2$	New
	$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[39]	Run 1	New
	$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[40]	Run $1\&2(*)$	New
	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[41]	Run 1	New
	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	x, y	[42]	$\operatorname{Run} 1$	New
	$D^0 \rightarrow K_{\rm S}^{\overline{0}} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[43]	Run 1	New
	$D^0 \rightarrow K_{\rm S}^{\rm \bar{0}} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[44]	Run 2	New

Consistent with WA indirect measurements: $\gamma = (65.66^{+1.30}_{-1.20})^{o}$ [1] More measurements in the pipeline (LHCb, Run1, 2)

[1] CKMFitter, PR **D91** (2015)

15

Gamma timeline

Loop Processes

Depending on NP model, heavy particles can also enter at tree-level (*e.g* heavy Z' that allows FCNC, see Bause *et al*, EPJ *C82*, 42 (2022))

B⁰/B_s mixing: Side of UT

• Occurs through box diagrams, sensitive to heavy NP particles.

B⁰/B_s mixing

• Occurs through box diagrams, sensitive to heavy NP particles.

Phase of B mixing: Side of UT

□ Access by interference between $B_{(s)} \to f_{CP}$ and $B_{(s)} \to \overline{B}_{(s)} \to f_{CP}$ □ Mixing diagram brings in $\operatorname{Arg}(V_{tq}^*V_{tb})^2 = \frac{q}{p} = \exp(-i2\beta_{(s)})$

□ Expose phase through **time-dependent decay time asymmetry**

Phase of B mixing

□ Access by interference between $B_{(s)} \to f_{CP}$ and $B_{(s)} \to \overline{B}_{(s)} \to f_{CP}$ □ Mixing diagram brings in $\operatorname{Arg}(V_{tq}^*V_{tb})^2 = \frac{q}{p} = \exp(-i2\beta_{(s)})$

□ Expose phase through **time-dependent decay time asymmetry**

□ For $f_{CP} = J/\psi K_S^0$, expect single decay amplitude dominant $\rightarrow |\lambda| = 1$ □ Expect $C \cong 0 \rightarrow A(t) = \sin(2\beta) \sin(\Delta m_d t)$

19

Phase of B mixing

□ Access by interference between $B_{(s)} \to f_{CP}$ and $B_{(s)} \to \overline{B}_{(s)} \to f_{CP}$ □ Mixing diagram brings in $\operatorname{Arg}(V_{tq}^*V_{tb})^2 = \frac{q}{p} = \exp(-i2\beta_{(s)})$

Expose phase through time-dependent decay time asymmetry

□ For $f_{CP} = J/\psi K_S^0$, expect single decay amplitude dominant $\rightarrow |\lambda| = 1$ □ Expect $C \cong 0 \rightarrow A(t) = \sin(2\beta) \sin(\Delta m_d t)$

Measurement of $\sin(2\beta)$ in $B^0 \rightarrow \psi_{\ell^+\ell^-} K_S^0$

Measurement of CPV in $B^0 \rightarrow \psi_{\ell^+ \ell^-} K_S^0$ [1]

LHCb-PAPER-2023-013 (in preparation)

- Full Run 2 data sample (6 fb⁻¹)
 J/ψ → μ⁺μ⁻, e⁺e⁻ and ψ(2S) → μ⁺μ⁻

$B^0 o (c \overline{c}) K_S^0$	Signal (10 ³) [with tag]	$\varepsilon_{tag}D^2$
$J/\psi o \mu^+\mu^-$	306	4.71 ± 0.01
$J/\psi ightarrow e^+e^-$	23.6	4.62 ± 0.04
$\psi(2S) \to \mu^+ \mu^-$	42.7	6.48 ± 0.03

Measurement of CPV in $B^0 \rightarrow \psi_{\ell^+ \ell^-} K_S^0$ [1]

10

2

LHCb-PAPER-2023-013 (in preparation)

- Full Run 2 data sample (6 fb⁻¹)
 J/ψ → μ⁺μ⁻, e⁺e⁻ and ψ(2S) → μ⁺μ⁻

$B^0 o (c\overline{c})K^0_S$	Signal (10³) [with tag]	$\varepsilon_{tag}D^2$
$J/\psi ightarrow \mu^+\mu^-$	306	4.71 ± 0.01
$J/\psi ightarrow e^+e^-$	23.6	4.62 ± 0.04
$\psi(2S) \to \mu^+ \mu^-$	42.7	6.48 ± 0.03

$$\mathcal{P}(t, d, \tilde{\eta}) \propto e^{-\Gamma t} \left\{ [1 + d(1 - 2\omega^{+}(\tilde{\eta}))] \underline{P}_{\underline{B}^{0}}(t) + [1 + d(1 - 2\omega^{-}(\tilde{\eta}))] \underline{P}_{\underline{B}^{0}}(t) \right\}$$

$$P_{\underline{B}^{0}, (\underline{B}^{0})}(t) \propto (1 \mp \alpha)(1 \mp \Delta \epsilon_{tag})(1 \mp S \sin(\Delta m_{d}t) \pm C \cos(\Delta m_{d}t)),$$

$$= d = +1(B^{0}), -1(\bar{B}^{0}) \qquad \sigma_{t} \sim 60 \ fs$$

$$= \omega^{+}(\tilde{\eta}), \omega^{-}(\tilde{\eta}): \ \text{Calibrated mistag rates for } B^{0}, \bar{B}^{0} \qquad \sigma_{t} \sim 60 \ fs$$

$$= \alpha, \Delta \epsilon_{tag} \ \text{account for production, flavor-tag asymmetry}$$

$$= \int_{10^{0}}^{10^{0}} \int_{10^{0}}^{10^{0}} \int_{B^{0} \to f(C) \to \mu[K_{1}^{0}]}^{10^{0}} \int_{B^{0} \to \mu[K_{1}^{0}]}^{10^$$

12

10

 t^{14} [ps]

parameters in the fit.

Measurement of CPV in $B^0 \rightarrow \psi_{\ell^+ \ell^-} K_S^0$ [2]

LHCb-PAPER-2023-013 (in preparation)

Time-dependent asymmetry

□ ~2X more precise than, and compatible with B-factories □ Preliminary WA ~ 1.5% precision.

Measurement of CPV in $B^0 \rightarrow \psi_{\ell^+\ell^-} K_S^0$ [2]

LHCb-PAPER-2023-013 (in preparation)

 $S_{2021}^{WA} = 0.699 \pm 0.017 \ (2.4\%) \rightarrow S_{\psi K_c^0}^{WA} = 0.708 \pm 0.011 \ (1.6\%)$

CPV phase in B_s mixing: φ_s

CPV phase φ_s

- $\Box \text{ In SM}, \varphi_s \cong -2\beta_s \text{, the phase of } B_s \text{ mixing}.$
- □ Global fits (w/o direct m'ment), $\varphi_s = -36.8^{+0.09}_{-0.06}$ mrad (<< 2 $\beta \approx 800$ mrad)
- □ New CPV phases can lead to large deviations
 - □ Ideal modes: $J/\psi h^+h^-$, no additional CKM phase $b \rightarrow c\bar{c}s$ ($V_{cb}V_{cs}$ real)
 - □ Must disentangle CP+ and CP- contributions (except $D_s^+ D_s^-$)

□ Statistical uncertainties still dominant.

New results from LHCb using full Run 2 data sample (6 fb⁻¹), in preparation.

 $\varphi_s^{2021}(all \ b \rightarrow c\bar{c}s) = -50 \pm 19 \text{ mrad}$

25

LHCb-PAPER-2023-016 (in prep)

Measurement of CPV phase φ_s [1]

□ Use $B_s \rightarrow J/\psi K^+ K^-$ near φ . □ Fit time-dependent decay rates.

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_{s}^{0} \to f) - \Gamma(B_{s}^{0} \to f)}{\Gamma(\bar{B}_{s}^{0} \to f) + \Gamma(B_{s}^{0} \to f)}$$
$$= \eta_{f} \mathcal{D}(t) \mathcal{D}(\omega) \sin(2\beta_{s}) \sin(\Delta m_{s} t)$$

 $\begin{array}{l} \square \ \eta_f = \mathsf{CP} \ \text{of final state} \\ \square \ \mathcal{D}(\mathsf{t}) = e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} : & \sigma_t \sim 42 \ \text{fs} \rightarrow \mathcal{D}(\mathsf{t}) \sim 0.76 \\ \square \ \mathcal{D}(\omega) = (1 - 2\omega) & \text{dilution due to mistag of flavor@production} \end{array}$

Measurement of CPV phase φ_s [1]

□ Use $B_s \rightarrow J/\psi K^+ K^-$ near φ . □ Fit time-dependent decay rates.

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_{s}^{0} \to f) - \Gamma(B_{s}^{0} \to f)}{\Gamma(\bar{B}_{s}^{0} \to f) + \Gamma(B_{s}^{0} \to f)}$$
$$= \eta_{f} \mathcal{D}(t) \mathcal{D}(\omega) \sin(2\beta_{s}) \sin(\Delta m_{s} t)$$

$$\Box \ \eta_f = \text{CP of final state}$$
$$\Box \ \mathcal{D}(t) = e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} : \sigma_t \sim 42 \text{ fs} \rightarrow \mathcal{D}(t) \sim 0.76$$
$$\Box \ \mathcal{D}(\omega) = (1 - 2\omega) \quad \text{dilution due to mistag of flavor@production}$$

□ $B_s \rightarrow J/\psi K^+ K^-$: φ : L = 0, 2 (CP+), L=1 (CP-) or $K^+ K^-$ in S-wave □ Decay rate PDFs also include decay angles, to determine CP composition of $K^+ K^-$

Measurement of CPV phase φ_s [3]

 \Box Most precise single φ_s analysis

□ Consistent with no CPV, and with small value of $-36.8^{+0.09}_{-0.06}$ mrad, based on global CKM fit.

$$\varphi_s^{LHCb}(J/\psi\phi) = -39 \pm 22 \pm 6 \text{ mrad}$$

□ Still statistically dominated.

□ Will improve with LHCb Upgrade 1 & 2, CMS & ATLAS

2021 WA:
$$\varphi_s^{2021}(all \ b \rightarrow c\bar{c}s) = -50 \pm 19 \text{ mrad}$$

2023 WA: $\varphi_s^{2023}(all \ b \rightarrow c\bar{c}s) = -39 \pm 16 \text{ mrad}$
(Preliminary)

Future projections: γ , $\sin(2\beta_s)$, $\sin(2\beta)$

9 fb ⁻¹	Upgrade I	Goal: 50 fb- Ungrade Ib	1 T	Jograde II	← Goal: 3()0 fb	
Run 1 LS1 Run 2	LS2	Run 3 LS3	Run 4	LS4	Run 5	LS5	Run 6
11 2012 2013 2014 2015 2016 2017 2018	2019 2020 2021 2022 2	2023 2024 2025 2026 2027 2028	2029 2030 2031 2032	2033 2034	2035 2036 2037 2038	2039	2040 2041

ATLAS-CONF-2023-026

ATLAS-CONF-2023-026

V_{tb} (t-channel)

□ Cross-sections measured for each process.

 $\Box \ \sigma(tq) = 137 \pm 8 \text{ pb}$ $\Box \ \sigma(\bar{t}q) = 84^{+6}_{-5} \text{ pb}$

 $\frac{\sigma(tq+\bar{t}q)}{\sigma_{theo}}=f_{LV}^2|V_{tb}|^2$

 $\sigma_{theo} = 214 \pm 3.4 \pm 1.8 \text{ pb}$ Campbell *et al,* JHEP 02 (2021)

Summary

- □ Study of loop-mediated decays a critical part of search for NP.
- □ Impressive progress in recent years in testing CKM paradigm
- □ Many measurements still statistically limited
 - → future LHCb upgrades critical, along with important contributions from CMS, ATLAS on $sin(2\beta_s)$.
- Theory/LQCD communities crucial part of this program, to shrink uncertainties on relevant hadronic matrix elements.

The future looks bright for precision tests of CKM sector!

Backup

B \rightarrow **DK** vs B \rightarrow D π

□ Why do we emphasize usage of the Cabibbo suppressed mode?

CKM factors	$h=\pi^-$	$h = K^-$
<i>A</i> ₁	$V_{cb}V_{ud}{\sim}O(\lambda^2)$	$V_{cb}V_{us} \sim O(\lambda^3)$
$ A_2 $	$V_{ub}V_{cd}{\sim}O(\lambda^4)$	$V_{ub}V_{cs}{\sim}O(\lambda^3)$
$ A_2/A_1 $	0(0.01)	0(0.1)

 \Box A₂ is (also) color-suppressed

 $\Box \text{ In } B^0 \text{ decays, can have } A_2 / A_1 \sim O(0.4)$

□ To maximize interference term, we want the two amplitudes to be of the same order
 → maximize sensitivity to angle (γ) between them!
 □ B→DK much more sensitive than B→Dπ, even though event rate is ~10X lower!

 $\lambda = \sin \theta_c \cong 0.22$

Constraints on NP in B decays

No smoking gun yet ... but O(20%) NP contributions not excluded.
 Greater precision needed -- LHCb upgrade(s) and Belle II necessary.
 Reduced theory errors on many inputs important & anticipated (LQCD)

CPV phase φ_s

- $\Box \text{ In SM}, \varphi_s \cong -2\beta_s \text{, the phase of } B_s \text{ mixing.}$
- □ Global fits (w/o direct m'ment), $\varphi_s = -36.8^{+0.09}_{-0.06}$ mrad (<< 2 $\beta \approx 800$ mrad)
- \square New particles in B_s box diagram can lead to large deviations
- □ Can measure φ_s via interference between $B_s \to f_{CP}$ and $B_s \to \overline{B}_s \to f_{CP}$.
 - □ Ideal modes: $J/\psi h^+h^-$, no additional CKM phase $b \to c\bar{c}s$ ($V_{cb}V_{cs}$ real)
 - □ Must disentangle CP+ and CP- contributions (except $D_s^+ D_s^-$)
 - □ Measurements from LHC

Mode	LHCb	CMS	ATLAS		
$B_s^0 \rightarrow J/\psi K^+ K^-$ (near ϕ) LHCb-PAPER-2023-016 (in prep)	$-39 \pm 22 \pm 6$ 6 fb ⁻¹ (13 TeV)	$-21 \pm 44 \pm 10$ 116.1 fb ⁻¹ (8 TeV)	$-87 \pm 36 \pm 21 \\80.5 \text{ fb}^{-1}$		
$B_s^0 o (J/\psi)_{ee} K^+ K^-$ (near ϕ) EPJ C81, 1026 (2021)	0 ± 280 ± 70 3 fb ⁻¹ (7. 8 TeV) PLB 816, 136188 (2021) EPJ C81, 34				
$B_s^0 \rightarrow J/\psi K^+ K^- \ (M_{KK} > 1.05 \text{ GeV})$ JHEP 34, 037 (2017)	119 ± 107 ± 34 3 fb ⁻¹ (7, 8 TeV)				
$B_s^0 o \psi(2S)K^+K^- \text{ (near }\phi\text{)}$ PL B113, 253 (2016)	230 ⁺²⁹⁰ ₋₂₈₀ ± 20 3 fb ⁻¹ (7, 8 TeV)				
$B^0_s o J/\psi \pi^+\pi^-$ PL B797, 134789 (2019)	2 ± 44 ± 12 1.9 fb ⁻¹ + 3 fb ⁻¹				
$B_s^0 \to D_s^+ D_s^-$ PRL 113, 211801 (2014)	20 ± 170 ± 20 3 fb ⁻¹ (7, 8 TeV)				
Integrated signal yields

CPV observable	Fit results
$A_K^{KK\pi\pi}$	(9.3 ± 2.3 ± 0.2)%
$R_{CP}^{KK\pi\pi}$	$0.974 \pm 0.024 \pm 0.015$
$A_{\pi}^{KK\pi\pi}$	$(-0.9 \pm 0.6 \pm 0.1)\%$

- \Box CPV in integrated yields for K^{\pm} , very small for $\pi^{\pm} \rightarrow$ Low sensitivity to γ
- **D** Next up: Measure yields in the $8_{\Delta\delta_D} \times 2_{r_D}$ bins

LHCb, arXiv:2301.10328

Semileptonic decays: $|V_{ub}/V_{cb}|$

Exclusive decays

 $\Box B \to (\pi, \rho) \ell^- \nu \quad (V_{ub}), \qquad B \to D^{(*)} \ell^- \nu \quad (V_{cb}) \longleftarrow e^+ e^- \to \Upsilon(4S) \to B\overline{B} \quad (Many \text{ m'ments})$ $\Box B_s \to K^- \mu^+ \nu \quad (V_{ub}/V_{cb}), \qquad B_s \to \overline{D}_s^{(*)} \mu^+ \nu \quad (V_{cb}) \qquad [1] \text{ LHC}b, \text{ PRL126 (2021)}$ [2] LHCb, PRD101 (2020)[3] LHCb, Nature Physics 11 (2015)

- □ Form factor normalization of from theory
- Inclusive decays: B → X_{u,c} ℓ⁻ν
 Only e⁺e⁻ → Y(4S) → BB̄
 Requires theory input: HQE, shape functions (V_{ub}), etc.

D Tension between inclusive and exclusive determinations

 \Box $|V_{ub}| \& |V_{cb}|$ have inflated error due to this tension.

PDG 2021	Inclusive	Exclusive	Average
V _{ub} (10 ⁻³)	$4.13 \pm 0.12 \substack{+0.13 \\ -0.14} \pm 0.18$	$3.70 \pm 0.10 \pm 0.12$	3.82 ± 0.20
V _{cb} (10 ⁻³)	42.2 ± 0.8	39.4 ± 0.8	40.8 ± 1.4

 Ongoing activity to understand possible sources. (See Tues talks by <u>Robinson</u> and <u>Lytle</u>)

