Precision predictions for $R(D^{(*)})$ (and exclusive measurements of $|V_{cb}|$)

Dean Robinson

SM@LHC

July 2023

The $b \rightarrow c$ semileptonic laboratory

Basics:

- Tree level processes: large ($\sim 10\%$) branching fractions, high statistics, and (relatively) theoretically clean
- Lepton gauge coupling universal in the SM: lepton flavor universality violation (LFUV) via lepton mass phase space suppression and couplings

- Can consider $B \to D^{(*)}$, D^{**} , ..., $\Lambda_b \to \Lambda_c^{(*)}$, ...
- Precision description of the hadronic matrix elements required for precision predictions and measurements

 $(D^{(*)}); |V_{cb}|$

Fits and predictions

Exclusive hadronic matrix elements represented by form factors (FFs). Schematic differential rates

$$\frac{d\Gamma[H_b \to H_c l\nu]}{d\mathsf{PS}} \sim |V_{cb}|^2 \times (\sum_i \mathsf{FF}_i \times \mathsf{helicity} \; \mathsf{ampl}_i)^2.$$

Logic: Precision data for $\ell = e$, μ modes + precision theory (continuum and/or lattice) for FFs \Rightarrow precision fits

- measurement of $|V_{cb}|$
- prediction for τ modes: BFs, τ-ℓ LFUV ratios, τ and D* polarization fractions

Outline

- New progress/methods to control second-order (NNLO) terms in Heavy Quark Effective Theory (HQET)
 - HQET essential for continuum precision SM predictions for the τ mode decays (and New Physics therein)
 - \circ Provides relations between D and D^* modes, allowing combined fits
 - New, supplemental power counting: "residual chiral expansion"
- Perspectives on systematic truncation of form factor parametrizations
 - $\circ~$ Addressing dangers of overfitting in theoretical (and experimental) frameworks

 $|V_{cb}|$ status

Long-standing $> 2\sigma$ tension between inclusive and exclusive measurements of $|V_{cb}|$. PDG averages:

$$|V_{cb}|_{incl} = (42.2 \pm 0.8) \times 10^{-3} , \qquad |V_{cb}|_{excl} = (39.4 \pm 0.8) \times 10^{-3} ,$$

Exclusive uncertainties now comparable with inclusive!

- Origin of the tension remains elusive
- |V_{cb}| is a crucial input to other precision measurements and BSM searches. E.g.
 b → sℓℓ rates (via |V_{ts}V_{tb}| ≃ |V_{cb}|).
 K_l → π⁰νν (tension in |V_{cb}| and |V_{ub}| contributes ~ 50–75% of uncertainties)

LFUV Ratios

In ratios of (exclusive) $b \to c\tau\nu$ vs $b \to c\ell\nu$ leading hadronic uncertainties cancel (in principle need only fit $\ell = e, \mu$ modes' 'shape' rather than overall normalization)

$$R(H_c) = Br[H_b o H_c au
u] / Br[H_b o H_c \ell
u]$$

- Comparison with predictions a clean null test of SM
- Expt in > 3σ tension with SM (or more; inter-experiment D** correlation model)
- 2% precision on the SM predictions for R(D) and $R(D^*) \ll$ expt stat uncertainties
- Future precision measurements may also become sensitive to theory-based uncertainties!

LFUV Forecast

Long-term forecasts expect few % statistical precision on a multitude of $R(H_c)$ measurements

- For most modes theory uncertainties smaller than mid-term forecast precision
- Eventual (sub)percent precision possible for R(D) and $R(D^*)$!
- Can we control theory-based systematics in description of form factors to this level?

Continuum theory approaches

Various theoretical constructs are available/in use in various combinations.[†] Precision continuum predictions for $R(D^{(*)})$ use HQET in some capacity.

Approach Dispersive Bounds HQET QCD sum rules (QCDSR) Light-Cone (LCSR)		Basis	Advantages	Drawbacks
		Unitarity & dispersion relations	model independent	no $ au$ mode predictions, no* NP predictions, truncation sensitivity
		Heavy Quark expansion	model independent, NP/ $ au$ -predictions, correlate D/D^*	second-order power corrections
		OPE: 3-pt correlators	calculable constraints	unassessible uncertainties model-dependent
		OPE: LC trans. dist.	calculable constraints	unassessible uncertainties boost outside physical range model-dependent
	Quark models	various	predictive, constrained	unassessible uncertainties model-dependent
† Plus LQCD (s	see following talk!)	NB: a very roug	h summary, not exhau	stive!

Continuum theory approaches

Various theoretical constructs are available/in use in various combinations.[†] Precision continuum predictions for $R(D^{(*)})$ use HQET in some capacity.

_	Approach	Basis	Advantages	Drawbacks
=	Dispersive Bounds	Unitarity & dispersion relations	model independent	no $ au$ mode predictions, no* NP predictions, truncation sensitivity
	HQET	Heavy Quark expansion	model independent, NP/ $ au$ -predictions, correlate D/D^*	second-order power corrections
	QCD sum rules (QCDSR)	OPE: 3-pt correlators	calculable constraints	unassessible uncertainties model-dependent
Light-Cone (LCS		OPE: LC trans. dist.	calculable constraints	unassessible uncertainties boost outside physical range model-dependent
	Quark models	various	predictive, constrained	unassessible uncertainties model-dependent
[†] Plus LQCD (se	ee following talk!)	NB: a very roug	h summary, not exhau	stive!

HQET short version

- idempotent projectors
- Mass-subtracted field redefinition of quarks $Q_{\pm}^{v}(x) = \prod_{\pm}^{v} e^{im_{Q} \cdot v \cdot x} Q(x)$
- Rewrite QCD (exactly) as

 $\begin{array}{c} \text{light massless} & \text{double heavy} \\ \mathcal{L}_{\text{QCD}} = \overline{Q}^{\nu}_{+} i \nu \cdot D Q^{\nu}_{+} + \overline{Q}^{\nu}_{+} i \not{D}_{\perp} Q^{\nu}_{-} + \overline{Q}^{\nu}_{-} i \not{D}_{\perp} Q^{\nu}_{+} - \overline{Q}^{\nu}_{-} (i \nu \cdot D + 2m_{Q}) Q^{\nu}_{-} \\ \text{NB:} D^{\mu}_{\perp} = D^{\mu} - \nu \cdot D \nu^{\mu} \end{array}$

- Integrate out the double heavy fields to generate HQET. Power expansion in $\sim i v \cdot D/(2m_Q) \sim \Lambda_{\rm QCD}/(2m_Q)$
 - Lagrangian corrections: $\mathcal{L}_{HQET} = \overline{Q}^{v}_{+} i v \cdot DQ^{v}_{+} + \sum_{n=1} \mathcal{L}_{n} / (2m_{Q})^{n}$
 - \circ Current corrections (from field redefn): $\mathcal{J}_{\mathsf{HQET}} = 1 + \sum_{n=1} \mathcal{J}_n / (2m_Q)^n$
 - Perturbative $\mathcal{O}(\alpha_s)$ radiative corrections are fully calculable.
- Obtain EFT of 'light muck' in definite s^P state around a HQ static color source.
 - $\circ~$ Hadrons embed into HQ supermultiplets
 - E.g. $s^P = \frac{1}{2}^- \Rightarrow J^P = \frac{1}{2} \times \frac{1}{2}^- = 0^- \oplus 1^-$: The *D* and *D**! HQET relates *B* → *D* and *B* → *D** FFs.

HQ velocity

HQET short version

NB

- Mass-subtracted field redefinition of quarks $Q_{\pm}^{\nu}(x) = \prod_{\pm}^{\nu} e^{im_Q \sqrt{v} \cdot x} Q(x)$
- Rewrite QCD (exactly) as

$$\mathcal{L}_{QCD} = \overline{\overline{Q}_{+}^{\nu} i \nu \cdot D Q_{+}^{\nu}} + \overline{\overline{Q}_{+}^{\nu} i \not D_{\perp} Q_{-}^{\nu} + \overline{\overline{Q}_{-}^{\nu} i \not D_{\perp} Q_{+}^{\nu}}} - \overline{\overline{Q}_{-}^{\nu} (i \nu \cdot D + 2m_Q) Q_{-}^{\nu}}.$$

$$: D_{\perp}^{\mu} = D^{\mu} - \nu \cdot D\nu^{\mu}$$

- Integrate out the double heavy fields to generate NQET. Power expansion in $\sim iv \cdot D/(2m_Q) \sim \Lambda_{\rm QCD}/(2m_Q)$ More soon about
 - Lagrangian corrections: $\mathcal{L}_{HQET} = \overline{Q}_{+}^{\nu} i \nu \cdot D Q_{+}^{\nu} + \sum_{n=1} \mathcal{L}_{n} / (2m)$ these terms!
 - $\circ~$ Current corrections (from field redefn): $\mathcal{J}_{\mathsf{HQET}} = 1 + \sum_{n=1} \mathcal{J}_n / (2m_Q)^n$
 - Perturbative $\mathcal{O}(\alpha_s)$ radiative corrections are fully calculable.
- Obtain EFT of 'light muck' in definite s^P state around a HQ static color source.
 - $\circ~$ Hadrons embed into HQ supermultiplets
 - E.g. $s^P = \frac{1}{2}^- \Rightarrow J^P = \frac{1}{2} \times \frac{1}{2}^- = 0^- \oplus 1^-$: The *D* and *D**! HQET relates $B \to D$ and $B \to D^*$ FFs.

idempotent projectors

HQ velocity

HQET short version

- Match QCD matrix element onto HQET.
- Each order in 1/m_{c,b} matches to HQET matrix elements involving (combinations of)
 OPE with L_n or L'_n
 - \circ contact terms involving \mathcal{J}_n or \mathcal{J}'_n
 - $\circ \text{ E.g. NLO } (1/m_Q): \text{ OPE } \sim \mathcal{L}_1 = -\overline{Q}_+^{\nu} \left[D^2 + \frac{g}{2} \sigma_{\alpha\beta} \, \mathcal{G}^{\alpha\beta} \right] Q_+^{\nu}; \text{ current } \sim \mathcal{J}_1 = i \not D.$
- Each HQET matrix element represented by Isgur-Wise functions (fns of $w = v \cdot v'$)
- ⇒ b → c FFs are expressed in terms of IW functions plus perturbative O(α_s) radiative corrections. Predictive/constrained when no. of IW fns is few.
- Can also match to derivatives of forward matrix element. Yields a hadron mass expansion

$$m_H = m_Q + \overline{\Lambda} - \frac{\lambda_1 + d_H \lambda_2}{2m_Q}$$
.
light dof KE in HQ limit

• Schwinger-Dyson relations cause $\overline{\Lambda}$ and $\lambda_{1,2}$ to enter $b \to c$ FFs.

HQET power corrections in $B \rightarrow D^{(*)}$

- $B \rightarrow D^{(*)}\ell\nu$ process involves 1 + 3 of 2 + 4 $B \rightarrow D^{(*)}$ FFs (4 + 8 with NP).
- NLO in HQET requires 4 IW functions. Predictive HQET constraints!

HQET order	HQET wavefunctions	Isgur-Wise fns	
$1/m_{c,b}^0$	1	1	
$1/m^1_{c,b}$	6	3	
$1/m_c^2$	6	20	
$1/m_{c,b}^2$	30	32	

- At NNLO ~ 1/m²_c there are 20 IW functions occuring in six independent combinations aka 'wavefunctions' (often denoted l_i; there are 24 more including 1/m_cm_b) Lose predictivity/constraints!
- NNLO corrections:
 - $\,\circ\,$ Largest $\sim \Lambda_{QCD}^2/4m_c^2 \sim 4\%.$ Larger than current exp precision!
 - $\circ~$ Also $\alpha_s/\pi \times \Lambda_{\rm QCD}/2m_c \sim 2\%$ and $\Lambda_{\rm QCD}^2/4m_cm_b \sim 0.8\%.$ Needed in future!

Zero-recoil difficulties

- Powerful current normalization constraints at zero recoil (w = 1) mean some $1/m_{c,b}$ corrections vanish (Luke's theorem).
- At NLO accidentally precise predictions for B → D* FF F(1). Large tensions vs LQCD

- Affects only overall normalization
- For R(D*) predictions at NLO, need only fit to shape of B → D* data.
 Bernlochner, Ligeti, Papucci, DR: 1703.05330 [aka BLPR. Corrects prior NLO inconsistencies, SM + NP]
- Higher precision, |V_{cb}|: requires control of NNLO corrections!

Prior NNLO approaches

- Full HQET expressions for NNLO FFs are long-known Falk and Neubert hep-ph/9209268
- Some recent approaches
 - $\,\circ\,$ Guesstimate of $1/m_c^2$ contributions Bigi, Gambino, Schacht 1707.09509
 - $\circ~1/m_c^2$ rescaling nuisance parameter Jaiswal, Nandi, Patra 1707.09977, 2002.05726
 - \circ Treat ℓ_i as nuisance parameters Bordone, Jung, van Dyk 1908.09398, 1912.09335
- Large number of nuisance parameters typically requires QCDSR or LCSR constraints for convergent fits

Can we develop a systematically improvable HQET-based approach (and avoid using QCDSR or LCSR)?

Chiral structure

Return to mass-subtracted QCD:

- Kinetic terms have accidental $U(1) \times U(1)$ chiral symmetry broken to U(1) by \not{D}_{\perp} terms (also break HQ spin symmetry)
- HQET corrections
 - Each Lagrangian correction \mathcal{L}_n generated by $\overline{Q}_+^{\nu}i\not\!\!\!\!/ p_\perp Q_-^{\nu}\overline{Q}_-^{\nu}i\not\!\!\!/ p_\perp Q_+^{\nu}$: two $\not\!\!\!\!/ p_\perp$ insertions
 - $\,\circ\,$ Each current correction \mathcal{J}_n generated by one insertion of $ot\!\!/ \!\!\!/_\perp$

Chiral structure

Return to mass-subtracted QCD:

$$\mathcal{L}_{\mathsf{QCD}} = \overline{Q}^{\mathsf{v}}_{+} i \mathsf{v} \cdot D Q^{\mathsf{v}}_{+} + \theta \left[\overline{Q}^{\mathsf{v}}_{+} i \not{\!\!D}_{\perp} Q^{\mathsf{v}}_{-} + \overline{Q}^{\mathsf{v}}_{-} i \not{\!\!D}_{\perp} Q^{\mathsf{v}}_{+}
ight] - \overline{Q}^{\mathsf{v}}_{-} (i \mathsf{v} \cdot D + 2 m_Q) Q^{\mathsf{v}}_{-} + \overline{Q}^{\mathsf{v}}_{-} i \not{\!D}_{\perp} Q^{\mathsf{v}}_{+} + \overline{Q}^{\mathsf{v}}_{\perp} Q^{\mathsf{v}}_{\perp} + \overline{Q}^{\mathsf{v}}_{\perp} Q^{\mathsf{v}}$$

- Kinetic terms have accidental $U(1) \times U(1)$ chiral symmetry broken to U(1) by \not{D}_{\perp} terms (also break HQ spin symmetry)
- HQET corrections
 - Each Lagrangian correction \mathcal{L}_n generated by $\overline{Q}_+^{\nu}i\not\!\!\!\!/ p_\perp Q_-^{\nu}\overline{Q}_-^{\nu}i\not\!\!\!/ p_\perp Q_+^{\nu}$: two $\not\!\!\!\!/ p_\perp$ insertions
 - $\,\circ\,$ Each current correction \mathcal{J}_n generated by one insertion of $\not\!\!\!D_\perp$

Idea: counting \not{D}_{\perp} insertions provides an additional classification of terms vs $1/m_Q$ power expansion. Deform QCD by including a \not{D}_{\perp} power-counting parameter θ BLPR + Xiong, Prim (BLPRXP) 2206.11281

Dean Robinson drobinson@lbl.gov

Residual chiral expansion (RCE)

At any order in HQET, can power count in θ : a symmetry breaking parameter. A well-defined EFT is generated at any order in θ .

	Correction or	Associated	$ ot\!\!\!/$	operator product
	Parameter	HQ order	power counting	(OP) order
	LO	$1/m_Q^0$	θ^{0}	0
	\mathcal{L}_n	$1/m_Q^n$	θ^2	1
	\mathcal{J}_n	$1/m_Q^n$	heta	0
Explicit (N)NLO \downarrow	$\overline{\Lambda}$, \mathcal{J}_1 , \mathcal{L}_1	$1/m_Q$	$ heta$, $ heta$, $ heta^2$	0, 0, 1
pieces	\mathcal{J}_2 , \mathcal{L}_2	$1/m_Q^2$	$ heta$, $ heta^2$	0, 1
	$\lambda_{1,2}$, $\mathcal{J}_1 imes \mathcal{J}_1'$	$1/m_Q^2$, $1/m_Q m_{Q^\prime}$	θ^2	0
	$\mathcal{J}_1 imes \mathcal{L}_1^{(\prime)}$	$1/m_Q^2$, $1/m_Q m_{Q^\prime}$	θ^3	1
	$\mathcal{L}_1 imes \mathcal{L}_1^{(\prime)}$	$1/m_Q^2$, $1/m_Q m_{Q^\prime}$	$ heta^{4}$	2

θ is *not* a small parameter. But:

• At $\mathcal{O}(\theta^2)$ capture all NLO plus NNLO with

zero OP insertions.

• $\mathcal{O}(\theta^3)$ and higher require more and more OPs!

Residual chiral expansion (RCE)

At any order in HQET, can power count in θ : a symmetry breaking parameter. A well-defined EFT is generated at any order in θ .

	Correction or	Associated	$ ot\!\!\!/$	operator product
	Parameter	HQ order	power counting	(OP) order
	LO	$1/m_Q^0$	θ^{0}	0
	\mathcal{L}_n	$1/m_Q^n$	θ^2	1
	\mathcal{J}_n	$1/m_Q^n$	heta	0
Explicit (N)NLO \downarrow	$\overline{\Lambda}$, \mathcal{J}_1 , \mathcal{L}_1	$1/m_Q$	$ heta$, $ heta$, $ heta^2$	0, 0, 1
pieces	\mathcal{J}_2 , \mathcal{L}_2	$1/m_Q^2$	$ heta$, $ heta^2$	0, 1
	$\lambda_{1,2}$, $\mathcal{J}_1 imes \mathcal{J}_1'$	$1/m_Q^2, 1/m_Q m_{Q'}$	θ^2	0
	$\mathcal{J}_1 imes \mathcal{L}_1^{(\prime)}$	$1/m_Q^2, 1/m_Q m_{Q'}$	θ^3	1
	$\mathcal{L}_1 imes \mathcal{L}_1^{(\prime)}$	$1/m_Q^2$, $1/m_Q m_{Q^\prime}$	$ heta^4$	2

θ is *not* a small parameter. But:

- At O(θ²) capture all NLO plus NNLO with zero OP insertions.
- $\mathcal{O}(\theta^3)$ and higher require more and more OPs!

Residual chiral expansion (RCE)

Number of IW functions tremendously reduced at $\mathcal{O}(\theta^2)$!

Obtain form factor expressions to $\mathcal{O}(\theta^2, 1/m_{c,b}^2, \alpha_s/m_{c,b}) \Rightarrow$ Constrained set of HQET-based relations for $B \to D^{(*)} l \nu$ in SM and NP at NNLO.*

* Find two minor errors in prior literature (F & N) wrt $1/m_c m_b$ terms

Zero-recoil $B \rightarrow D^{(*)}$ predictions

NNLO correction to F(1) fully determined by mass parameter λ_1 . 'Typically-allowed' RCE-based CL at $\mathcal{O}(1/m_{c,b}^2, \alpha_s/m_{c,b})$ in agreement with LQCD calculations (p = 0.4)!

Technical ingredients:

- 1*S* mass scheme: m_b^{1S} . Splitting $\delta m_{bc} = m_b m_c$ from inclusive spectra
- Cancellation of leading renormalon
- Use of inclusive spectra \Rightarrow third-order hadron mass parameter ρ_1
- Known zero-recoil α_s^2 correction for $\mathcal{F}(1)$

Zero-recoil $B \rightarrow D^{(*)}$ predictions

NNLO correction to F(1) fully determined by mass parameter λ_1 . 'Typically-allowed' RCE-based CL at $\mathcal{O}(1/m_{c,b}^2, \alpha_s/m_{c,b})$ in agreement with LQCD calculations (p = 0.4)!

Technical ingredients:

- 1*S* mass scheme: m_b^{1S} . Splitting $\delta m_{bc} = m_b m_c$ from inclusive spectra
- Cancellation of leading renormalon
- Use of inclusive spectra \Rightarrow third-order hadron mass parameter ρ_1
- Known zero-recoil α_s^2 correction for $\mathcal{F}(1)$

Parametrization

- For fits, require a parametrization of the IW functions.
- Leading order IW function expressed wrt conformal map $w \mapsto z_*$

$$\frac{\xi(w)}{\xi(w_0)} = 1 - 8a^2 \rho_*^2 z_* + 16(2c_*a^4 - \rho_*^2a^2)z_*^2 + \dots$$

conformal parameter, $z_*(w)$
 $z_*(w_0) = 0$

• (Sub)subleading IW functions $(w - 1 \le 0.59 \text{ in } B \rightarrow D^{(*)} l \nu)$

$$X(w) = X(1) + X'(1)(w - 1) + ...$$

may be constrained
by HQET

Parametrization

- For fits, require a parametrization of the IW functions.
- Leading order IW function expressed wrt conformal map $w \mapsto z_*$

$$\frac{\xi(w)}{\xi(w_0)} = 1 - 8a^2 \rho_*^2 z_* + 16(2c_*a^4 - \rho_*^2a^2)z_*^2 + \dots$$

conformal parameter, $z_*(w)$
 $z_*(w_0) = 0$

• (Sub)subleading IW functions $(w - 1 \le 0.59 \text{ in } B \rightarrow D^{(*)} l \nu)$

$$X(w) = X(1) + X'(1)(w - 1) + \dots$$
may be constrained
by HQET

Too many parameters \Rightarrow overfitting/biases

(highly-correlated parameters, runaways)

How does one decide where to truncate?

Nested Hypothesis Tests

Truncation effects are a challenge for any precision parametric fit!

NHT: a test of an *N*-parameter fit hypothesis versus N + 1. Also can consider Bayesian/Akaike Information Criteria. Others?

- For large N, $\Delta\chi^2 = \chi^2_N \chi^2_{N+1}$ is approximately a 1-dof χ^2 Wilks' Theorem
- Fit hypothesis graph: an initial space of parameters

$$|V_{cb}|$$
; m_b^{1S} , δm_{bc} , ho_1 , λ_2 ; ho_*^2 , c_* ; $\widehat{\eta}(1)$.

plus all combinations of five additional candidate parameters

 $\widehat{\eta}'(1)$, $\widehat{\chi}_2(1)$, $\widehat{\chi}_2'(1)$, $\widehat{\chi}_3'(1)$, $\widehat{arphi}_1'(1)$,

- Traverse graph depth-wise: Set threshold to reject a step $N \to N+1$ at $\Delta \chi^2 = \chi^2_N \chi^2_{N+1} < 1$ (68% CL)
- Reject any fit hypothesis/graph node with parametric correlations > 0.95, or with runaways.
- Optimal fit: terminating node with fewest parameters and lowest χ^2

Optimal RCE-based Fit

- Fit uses all available $B \to D$ and zero-recoil $B \to D^*$ LQCD data, plus all Belle $B \to D^{(*)} \ell \nu$ data, but no QCDSR or LCSR.
- NHT identifies 8 terminating nodes. Optimal choice:

$ V_{cb} imes 10^3$	38.70(62)
ρ_*^2	1.10(4)
<i>C</i> *	2.39(18)
$\widehat{\chi}_2(1)$	-0.12(2)
$\widehat{\chi}_2'(1)$	_
$\widehat{\chi}'_{3}(1)$	_
$\widehat{\eta}(1)$	0.34(4)
$\widehat{\eta}'(1)$	_
m_b^{1S} [GeV]	4.71(5)
δm_{bc} [GeV]	3.41(2)
$\widehat{arphi}_1'(1)$	0.25(21)
$\lambda_2 [\text{GeV}^2]$	0.12(2)
$\rho_1 \; [\text{GeV}^3]$	-0.36(24)

- $\circ~$ Optimal fit sensitive to NNLO IW parameter
- $\circ~$ Goodness of fit $\chi^2/{\rm ndf}=29.8/31$
- $\circ~|V_{cb}|$ more precise than exclusive PDG average 39.4(8) $\times~10^{-3}$

Predicted LFUV Ratios

Obtain precision result from fit:

PDG-style scale factor S = 2.6from tension in Belle 2017 vs 2019 data

R(D) = 0.288(4), $R(D^*) = 0.249(3)$, (
ho = 0.121)

- Prior NLO R(D) = 0.298(3), R(D*) = 0.261(4)
 BLPR 1703.05330. A 2.7σ tension!
 - Relaxation of a heuristic slope-curvature constraint (invented by 'CLN' param)
 - Tension in Belle 2017 vs 2019 data. NEW Belle analysis 2301.07529, fits coming soon! Await more precise Belle II data!
- R(D^(*)) stable over terminating NHT nodes, but NHT is crucial to avoid biased predictions

Some comparisons

Collaboration/Group Comment		R(D)	$R(D^*)$	corr.	$ V_{cb} imes 10^3$
2111.09849 [FLAG]	FLAG, LQCD	0.2934(53)	-	-	39.4(7)
2105.14019 [FNAL/MILC]	LQCD	-	0.265(13)	-	38.4(8)
2304.03137 [Harrison, Davies]	LQCD	-	0.279(13)	-	39.3(7)
2306.05657 [JLQCD]	LQCD	-	0.252(22)	-	39.2(9)
1703.05330 [Bernlochner, Ligeti, Papucci, & DR]	HQET NLO Shape	0.298(3)	0.261(4)	0.44	_
1707.09977 [Jaiswal, Nandi, Patra]	$1/m_c^2$ parameter	0.299(4)	0.257(5)	~ 0.1	39.8(9)
1908.09398 [Bordone, Jung, van Dyk]	$1/m_c^2$ nuisance + QCDSR + LCSR	0.298(3)	0.250(3)	-	40.3(8)
2206.07501 HFLAV (2021)	HFLAV Arith. Av.	0.298(4)	0.254(5)	-	
2004.10208 [Iguro, Watanabe]	BJvD + Bayesian IC	0.290(3)	0.248(1)	-	39.3(6)
2206.11281 [BLPRXP]	NNLO RCE $+$ NHT	0.288(4)	0.249(3)	0.121	38.7(6)

- Recent results using systematic truncation methods agree well, percent-level precision.
- Shift in $R(D^*)$ associated with Belle 17 vs 19
- Exclusive $|V_{cb}|$ stable across different approaches

Summary & Outlook

- New approach/model for controlling/constraining NNLO HQET contributions in exclusive $b \rightarrow cl\nu$ (and elsewhere): Residual Chiral Expansion
 - $\circ~$ Single additional subsubleading IW function at $1/m_c^2.$ Agree with LQCD at zero recoil.
 - Coming soon: Updated fits with JLQCD calculations and latest Belle $B \to D^* \ell \nu$ analysis; application to baryonic decays $\Lambda_b \to \Lambda_c l \nu$.
- Systematic approaches to truncation (NHT, etc) are crucial for precision parametric fits and predictions.
- $R(D^{(*)})$ predictions are already near the percent level. Key challenge: assessing biases from sum rules/models/truncation.
- Further LHCb and Belle II measurements are eagerly anticipated (see Manuel's talk on Thurs!)

Thanks!