Multiboson measurements at ATLAS and CMS

Despina Sampsonidou

University of Oregon

On Behalf of ATLAS and CMS Collaborations

12th July SM@LHC 2023

Motivation

- Electroweak-boson selfinteractions are rare processes that serve as:
 - an excellent probe to the Standard Model predictions
 - a portal to Physics Beyond the Standard Model, through the Effective Field Theories
- Going to focus to the newest results on **triboson**, diboson and processes that include aQGCs

Triboson processes and quartic couplings

- **Triboson**: probe of non-Abelian self couplings of the electroweak gauge bosons in the Standard Model (SM)
- Backgrounds to SM processes like ZH($\gamma\gamma$) and WH($\gamma\gamma$) that will become accessible at Run 3
- Sensitive to anomalous Quartic Gauge Coupling (aQGC) operators
- Serve as a probe for New Physics
- Vector boson scattering and triboson production processes-> aQGCs

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{\tilde{c}_i}{\Lambda^{d-4}} \mathcal{O}_i$$

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	\checkmark	\checkmark			\checkmark				
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	✓	\checkmark	~	~	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		\checkmark	~	~	~	\checkmark	\checkmark		
$\mathcal{O}_{T,0} \;, \!\mathcal{O}_{T,1} \;, \!\mathcal{O}_{T,2}$	~	\checkmark	~	~	~	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		\checkmark	~	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Triboson processes and quarti Ana Cueto's talk on

- Triboson: probe of non-Abelian self couplings of the еlectroweak gauge bosons in the Standard Model (SM)
- Backgrounds to SM processes like ZH($\gamma\gamma$) and WH($\gamma\gamma$) that will become accessible at Run 3
- Sensitive to anomalous Quartic Gauge Coupling (aQGC) operators
- Serve as a probe for New Physics
- Vector boson scattering and triboson production processes-> aQGCs

$$\overline{q}$$
 W Z Z W W W W

\mathcal{L}_{EFT} =	$= \mathcal{L}_{SM}$	$+\sum_{d>4}\sum_{d>4}$	$\sum_i rac{ ilde{c}_i}{\Lambda^{d-1}}$	$\overline{_{-4}}\mathcal{O}_i$	

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	\checkmark	\checkmark			\checkmark				
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	✓	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark		
$egin{array}{cccccccccccccccccccccccccccccccccccc$		\checkmark	~	~	\checkmark	\checkmark	\checkmark		
$igsim \mathcal{O}_{T,0} \;, \! \mathcal{O}_{T,1} \;, \! \mathcal{O}_{T,2}$	~	\checkmark	~	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		\checkmark	~	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,8}\;, \mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

First results

- First results of triboson processes in ATLAS and CMS using Run 2 datasets
 - First evidence for WWW and WWZ at ATLAS in 2019
 - Partial Run 2 dataset 80 fb-1
 - Observed:WWW 3.2σ
 - First observation of VVV at CMS in 2020
 - Full Run 2 dataset 137 fb-1
 - Observed: VVV 5.7σ

Phys. Rev. Lett. 129 (2022) 061803

ATLAS WWW

• Principle: avoiding opposite sign, same flavor pairs of leptons (OSSF) and SM processes that produce oppositely charged leptons pairs

WWW: Results

- Main background source is WZ: constrained using data from dedicated control regions (WZ+0,1,>1jets) to normalize the MC
- Data-driven methods to constrain:
 - Non-prompt leptons
 - \bullet V γ events where the photon is misidentified as an electron
 - Prompt electron mis-identification (chargeflip)
- Fit strategy: simultaneous binned log-likelihood fit of BDT distributions in 21 and 31 signal regions

BDT output

BDT output

<u>Phys. Rev. Lett. 129</u> (2022) 061803

CMS-PAS-SMP-22-006

CMS: WWy

- Leptonic final state OFOS (W+W- $\rightarrow e\nu\mu\nu$)
- NLO QCD prediction
 - Non-prompt γ
 - Data-driven fake rate estimate in W+jets CR by fitting the photon shower width to extract non-prompt component
 - Non-prompt leptons
 - Data driven fake rate estimate in dijet CR
 - Top and SSWW CR :
 - \geq 1 b-jet used to constrain non-prompt lepton and non-prompt γ backgrounds in fit

Process	Signal region	SSWW γ CR	Top γ CR
$WW\gamma$	254.0 ± 47.3	$1.2{\pm}0.2$	$12.8 {\pm} 2.7$
QCD V γ	166.7 ± 13.8	12.2 ± 2.2	$12.6 {\pm} 1.2$
VV	36.7 ± 3.5	$24.9 {\pm} 1.7$	$2.0 {\pm} 0.3$
Тор	327.5 ± 32.2	$2.4{\pm}0.6$	2433.5 ± 85.2
Nonprompt ℓ	122.9 ± 9.7	196.6 ± 13.6	$39.8 {\pm} 10.7$
Nonprompt γ	409.9 ± 31.7	$19.9 {\pm} 1.6$	793.2 ± 62.1
Expected	1318 ± 43	257 ± 14	3294 ± 57
Observed	$1330 {\pm} 46$	259 ± 20	3287 ± 59

Fit: 2D fit mTWW-mIly used in the CRs and the 3 SR regions in mIly for 0 and >=1jets

First observation with 5.6 σ : σ = 6.0 ± 1.0 (stat.) ± 1.0 (syst.) ± 0.9 (theo.) fb

CMS: WWy

- Search for $H\gamma$ production with modified Higgs boson couplings to light quarks
- H γ ->WW γ : similar selection with EW, adding
 - Δφll< 2.5
 - $\Delta Rll < 2.3$
 - $\Delta R l \gamma > 0.8$
- Yukawa couplings limits using ΔRll and mTH distributions
- Expected and observed upper limits on the H γ cross sections at 95%

Limits set on Higgs Yukawa couplings to u, d, s, c quarks			Under the assumption that that all other SM κ scale to give a signal	
Process	σ_{up} pb exp.(obs.)	Yukawa co	ouplings limits exp.(obs.)	strength of 1 for all other Higgs
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \leq 1300$	00 (16000)	production decay processes
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq 1400$	00 (17000)	
$s\overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300$) (1700)	
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \leq 110$	200)	

https://arxiv.org/abs/2305.16994

ATLAS WZY

- Final state: 3 charged leptons (e, µ) +
 MET + 1 isolated photon
- Dominant BG:non-prompt γ and leptons
 - Estimated using data-driven calculation
- ZZ γ and ZZ ($e \rightarrow \gamma$) bkg normalization from simultaneous fit in CRs
- Fit in SR and the 2 CRs for all leptonic final states

First observation with significance: 6.3σ ! Observed cross section σ = 2.01±0.30 (stat) ±0.16 (syst) fb

ATLAS: Wyy

- Final state:lvγγ
- Dominant uncertainty: one or both signal photons originate from a misidentified jet or neutral hadron decay $(j \rightarrow \gamma)$
 - Data-driven two-dimensional template fit method
- $e \rightarrow \gamma$, second largest background in e channel
 - Data-driven fake rate estimate $Z \rightarrow ee/e\gamma CR$
- Top background constrained in ≥ 1 b-jet CR simultaneously with SR
 - Validated in low ET miss region with ≥ 1 b-jet
- Dominant uncertainties : systematic on $j \rightarrow \gamma$ followed by stat. uncertainty

11

Source	\mathbf{SR}	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson ($WH(\gamma\gamma), WW\gamma, Z\gamma\gamma$)	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	_
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	_
Total	1136 ± 34	332 ± 18
Data	1136	333

First observation with 5.6σ: Observed cross-section: 12.2 + 2.1 - 2.0fb

CMS Vyy

- Final states: llyy and lvyy
- if $lm(e\gamma) m(Z)l$ or $lm(e\gamma\gamma) m(Z)l < 5$ GeV $-> \gamma$ removed to reduce FSR
- Dominant background: misidentification of jets as photons

->Data-driven method

• Fit on distribution of diphoton pT system for all final states

Ζγγ : 4.8σ obs Wγγ : 3.1σ obs

$$\begin{split} &\sigma(W\gamma\gamma)^{\rm meas} = 13.6^{+1.9}_{-1.9}\,({\rm stat})^{+4.0}_{-4.0}\,({\rm syst}) \pm 0.08\,({\rm PDF} + {\rm scale})\,{\rm fb}, \\ &\sigma(Z\gamma\gamma)^{\rm meas} = 5.41^{+0.58}_{-0.55}\,({\rm stat})^{+0.64}_{-0.70}\,({\rm syst}) \pm 0.06\,({\rm PDF} + {\rm scale})\,{\rm fb}. \end{split}$$

JHEP 2021

- Limits on Dim-8 EFT parameters
- pT of the diphoton system used as discriminating variable for the aQGCs
- Expected and observed constraints on the Dim-8 EFT parameters for both final states

	$W\gamma\gamma$ (TeV^{-4})	$ m Z\gamma\gamma(TeV^{-4})$		
Parameter	Expected	Observed	Expected	Observed	
$f_{M,2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]	-	-	
$f_{M,3}/\Lambda^4$	[-91.8, 92.6]	[-63.8, 65.0]	-	-	
$f_{T,0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]	
$f_{T,1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]	
$f_{T,2}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]	
$f_{T,5}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]	
$f_{T,6}/\Lambda^4$	[-0.92, 1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]	
$f_{T,7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]	
$f_{T,8}/\Lambda^4$	-	-	[-0.90, 0.94]	[-1.06, 1.10]	
$f_{T,9}/\Lambda^4$	-	-	[-1.54, 1.54]	[-1.82, 1.82]	

12

ATLAS Ζγγ

- e/µ channels, 13 TeV, 139 fb-1
 - Cut on m(ll) and min(m(ll γ 1), m(ll γ 2)) to minimize FSR
 - Enhance signal region (ISR): $m\ell\ell + min(m\ell\ell\gamma 1, m\ell\ell\gamma 2) > 2mZ$
- Dominant BG: $jj \rightarrow \gamma$ mis-ID
 - Estimated using data-driven method
- Differential cross section along 6 kinematic variables

ATLAS Zyy

Measured cross section = 2.45 ± 0.20 (stat.) ± 0.22 (syst.) ± 0.04 (lumi) fb

- Integrated cross-section measurement precision: 12%
- Test SM predictions at up to NLO accuracy with Sherpa & MG5
- Differential distributions for the first time

ATLAS Zyy

- Dim-8 EFT limits on fT coefficients
- pT(ll) distribution used as discriminating variable
- Unitarized limits obtained
- Unitarization: Clipping method used
 - Limits as a function of Ec \rightarrow invariant mass of $ll\gamma\gamma$ system
 - BSM events with E>Ec are removed from the signal MC

CMS ZZ+jets

- 139 fb-1, fully leptonic final state
- Diboson production in association with jets
- Differential distributions
- General agreement between theoretical predictions and data
- In some regions discrepancies between predicted and measured values
- nNNLO+PS prediction describes the distribution of jet multiplicities better than MadGraph5 aMC@NLO and POWHEG
- Inclusion of EW corrections improves the description of the m4l distribution.

CMS-PAS-SMP-22-001

ATLAS-CONF-2023-024

_ئ ب

10

0

-10

ATLAS Preliminary

Vs = 13 TeV, 140 fb⁻

ATLAS ZZjj

- EWK production of 4 leptons in association with two jets
- VBS enhanced and suppressed regions based on 41 system centrality
- Differential measurement of ZZjj with Full Run 2 dataset
- aQGC expected and observed limits as a function of energy cut-off

ATL-PHYS-PUB-2023-002

ATLAS ssWW+WZ

- Combined interpretation of ssWW and WZjj with Partial Run2 dataset
- Discriminating distributions:
 - ssWW: Reco-level mll
 - WZjj: Differential distribution of mTWZ
- Experimental systematic uncertainties treated correlated between the two measurements
- Unitarization: clipping method used, limits as a function of Ec
 - WZjj: Ec—>mWZ at generator level
 - ssWW: Ec -> mWW at generator level
- 1D and 2D limits

ATLAS ssWW and WZjj

ATL-PHYS-PUB-2023-002

Conclusion

- Precision measurements of triboson and diboson processes presented
- Exciting new first observations of triboson channels by ATLAS and CMS
- Improved limits set on aQGC operators with triboson and VBS analyses
- New limits on Higgs coupling to light quarks with WWγ analysis by CMS
- Differential cross sections on diboson ZZ in association with jets from CMS discussed
- Run3 ongoing: increased statistics are promising for new measurements and BSM interpretations!

Thank you!

Backup-WWW

$\ell^{\pm} \nu \ell^{\pm} \nu j j$ Si	$\ell^{\pm} v \ell^{\pm} v j j$ Signal Region					
$e^{\pm}e^{\pm}$	$e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$					
2 SS leptons with leading	2 SS leptons with leading lepton- $p_{\rm T}$ > 27GeV					
veto 3 rd	lepton					
$40 < m_{\ell\ell} < 80 \text{ GeV}$	40 c m c 400 C v					
$100 < m_{\ell\ell} < 400 \text{ GeV}$	$40 < m_{\ell\ell} < 400 \text{ GeV}$					
≥ 2 jets						
<i>b</i> -jet veto @ 85% DL1r						
$ \Delta \eta_{jj} < 1.5$						
m_{jj} <160 GeV						
E_T^{miss} -significance > 3		None				

Table 14: Selection criteria for the $\ell^{\pm} \nu \ell^{\pm} \nu j j$ SRs.

$\ell^{\pm} \nu \ell^{\mp} \nu \ell^{\mp} \nu$ Signal Region					
$e^{\pm}\mu^{\mp}\mu^{\mp}$	$\mu^{\pm}e^{\mp}e^{\mp}$				
3 leptons	3 leptons with leading lepton- $p_{\rm T} > 27 {\rm GeV}$				
$\Sigma q_{\ell} = \pm 1$					
veto 4 th lepton					
no SFOS lepton pairs					
<i>b</i> -jet veto @ 85% DL1r					
5					

Table 15: Selection criteria for the 3ℓ SR.