

Novel Materials and Concepts for Next-Generation High Power Targetry

Kavin Ammigan HEP High-Power Targetry Roadmap – Targets and Sources 11-12 April 2023

Snowmass whitepaper submitted on 03/15/22

Novel Materials and Concepts for Next-Generation High Power Target Applications

https://arxiv.org/abs/2203.08357

A whitepaper for Snowmass 2022 from the AF-7 - Accelerator Technology R&D Subgroup Targets and Sources

K. Ammigan¹, S. Bidhar¹, F. Pellemoine¹, V.Pronskikh¹, D. Pushka¹, K. Yonehara¹, R. Zwaska¹, A. Couet², M. Moorehead², T. Ishida³, S. Makimura³, C. Densham⁴, M. Fitton⁴, E. Harvey-Fishenden⁴, T. Davenne⁴, D. Jenkins⁴, P. Loveridge⁴, J. O'Dell⁴, C. Rogers⁴, D. Wilcox⁴, M. Calviani⁵, S. Gilardoni⁵, F.-X. Nuiry⁵, A. Perillo-Marcone⁵, N. Bultman⁶, J. Gao⁶, M. Larmann⁶, M. LaVere⁶, W. Mittig⁶, M. Reaume⁶, J. Wei⁶, Y. Xu⁶, G. Muhrer⁷, T. Shea⁷, C. Thomas⁷, M. Wohlmuther⁷, E. Wakai⁸, C. Barbier⁹, and B. Riemer⁹

¹Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
²University of Wisconsin-Madison, Madison, WI 53715, USA
³High Energy Accelerator Research Organization, Tsukuba, Japan
⁴Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
⁵European Laboratory for Particle Physics, Geneva, Switzerland
⁶Facility for Rare Isotope Beams, Michigan State University, MI 48824, USA
⁷European Spallation Source, Lund, Sweden
⁸Japan Atomic Energy Agency, Tokai, Japan
⁹Oak Ridge National Laboratory, Oak Ridge, TN 37831

Advancing the state-of-the-art in target materials and concepts

- Operate at higher beam power and intensity, and improve ability to convert primary beam into secondary particles of interest
- Enhance reliability and lifetime of targetry components to maximize uptime of target facilities
 - Targets, beam windows, beam dumps, collimators, etc.
- Enable next-generation multi-megawatt accelerator facilities (>10 years)
 - LBNF 2.4 MW, Mu2e-II, FCC, ILC, neutron sources, etc.
- Develop radiation damage and thermal shock tolerant materials
 - Leading cross-cutting challenges facing high-power target facilities
- Develop new targetry concepts and technologies to cope with higher power

Novel materials R&D

- High-Entropy Alloys (HEAs)
 - Multi-component alloys for accelerator applications (beam windows)
 - Shown to have improved radiation damage resistance
 - Broad range of alloy systems that can be explored
 - R&D efforts recently started at Fermilab (DOE ECRP support)
- Electrospun Nanofiber Materials
 - Ceramic and metallic nanofiber materials for secondary-particle production targets
 - To improve radiation damage and thermal shock resistance
 - Initial LDRD project and ongoing effort with DOE ECRP at Fermilab

Novel materials R&D

- SiC-coated graphite and SiC-SiC composites
 - For improved oxidation resistance at high temperatures
 - Higher efficiency of secondary particles transport
 - Ongoing R&D at KEK and within the RaDIATE collaboration
- Toughened Fine-Grained Recrystallized (TFGR) Tungsten
 - Muon/neutron production target
 - R&D effort to reduce embrittlement of W (at low temperature and after recrystallization)
 - Investigating grain boundary reinforced nanostructures (TFGR)
 - Ongoing R&D at KEK and within the RaDIATE collaboration

Novel materials R&D

- Dual-Phase Titanium Alloys
 - Ti-6Al-4V commonly used for beam windows
 - Good strength, ductility and corrosion resistance but properties degrade significantly under neutron/proton irradiation
 - R&D efforts ongoing to improve fatigue life and radiation damage resistance
 - Microstructural control by thermomechanical treatment, 3D printing, investigation of advanced dual-phase Ti alloys, improved corrosion resistance using coatings (TiN, TiAIN)
- Advanced Graphitic Materials
 - 2D/3D carbon/carbon, Mo-C reinforced composites to improve thermal/electrical properties
 - Ongoing R&D at CERN and within the RaDIATE collaboration

Novel targetry concepts and technologies

- Rotating, flowing and circulating targets
 - Rotating targets (FRIB, ESS) for high power beam operation
 - Significant R&D needed on flowing and circulating solid targets (Mu2e-II, Muon collider, etc.)
 - Granular target, conveyor target, fluidized powder target, ...
 - Some R&D effort at STFC RAL and Fermilab
 - R&D of flowing liquid metal targets (ORNL SNS, MLF)
 - Address cavitation erosion and fatigue issues to allow higher beam power

Novel targetry concepts and technologies

- Advanced cladding materials and technologies
 - Diffusion bonding of dissimilar materials with HIP methods (eg. cuprous materials to SS)
 - For enhanced heat transfer to cope with increased power deposition (beam dump and absorbers)
 - Advanced cladding techniques for W and Mo-alloy (TZM) with Ta and Ta2.5W
 - Other cladding materials R&D: Zircalloy, Nb-alloys, TZM
 - Continued investigation and PIE of cladding breach and radiation damage effects
 - Ongoing R&D at CERN and ISIS Neutron and Muon facility

Novel targetry concepts and technologies

- Targety geometry and composition optimization
 - Need to initiate effort in this area
 - Using Monte-Carlo and FEA simulations together with Machine Learning techniques to optimize the target system
 - Fine tune target shape and composition (eg. variable density) to increase efficiency
- High-heat flux cooling methods
 - Need to initiate R&D to address heat removal challenges
 - Explore unconventional heat transfer techniques
 - Controlled boiling (hyper-vapotron), radiative cooling, other methods...

Novel HPT materials and concepts

- Successful development and validation of these novel materials and target technologies will strongly depend on:
 - Material irradiation capabilities using prototypic or alternative beams (radiation damage and thermal shock tests)
 - Post-irradiation material characterization techniques (hot cells and testing equipment)
 - Modeling capabilities

10