Compact Positron Source

arXiv 2301.08368

Spencer Gessner, SLAC

Target and Sources Roadmap Workshop April 11-12, 2023

Low Energy Positron Source

GBAR Positron Source

Buffer Gas Trap Schematic

Low energy positron sources are commonly employed in antimatter and material science studies.

Combine Positron Source with Accelerator

We are exploring the possibility of accelerating positron beams from the trap:

- <u>https://arxiv.org/abs/2301.08368</u>
- Advantages includes:
- Small thermal emittance
- Compact size/low cost
- Polarized positrons from ²²Na

Disadvantages:

- Very-low positron rate X
- Low-energy/long bunch ×

The beam is magnetized.

A Compact Source of Positron Beams with Small Thermal Emittance, R. Hessami and S. Gessner, arXiv 2301.08368 (submitted to PRAB)

This novel, low-cost positron source can enable accelerator physics studies and ultrafast material science research.

Positron Source for Linear Collider?

Linear colliders require $10^{14} e^{+}/s$ at the IP.

This source only provides $10^8 e^+/s$. This seems like too large a gap!

However, this possibility is worth exploring in more detail because the cost of the sources and damping rings for a Linear Collider exceed **\$1B!**

The concept of multiplexing the positron source already exists. Two research areas:

- 1. How to extrapolate from a 4-cell trap to a 1000-cell trap? Economy of scale?
- 2. How to accommodate stronger ²²Na sources?

Damping-ring-free electron injector proposal for future linear colliders, T. Xu et al. Phys. Rev. Acc. Beams (2023)

Confinement and manipulation of electron plasmas in a multicell trap, N. Hurst et al. Phys. Plasmas (2019)