
GArSoft Updates

ND-GAr: HPgTPC+ECAL Weekly Meeting

28 March 2023
Leo Bellantoni

2

Shown by Anezka in Collab
week

• Two instances of GENIEGen can not work in the same GArSoft art job.
• Suppose you were interested, as I am, in studying electrons in the ECAL

with overlays. You might create a GENIEGen which only sampled the νe flux
in the TPC and a second instance of GENIEGen which had the default
generation all over the MPD, including in the ECAL.

• This does not work. You do not get energy deposits from GEANT from the
2nd instance.

• Heinous details in Appendix
• And they ARE heinous. There seems to be something wrong in

TGeoNavigator::SearchNode(...) for this particular case.
• This *might* affect LArSoft, as well. I d not know about their use cases

though.
• We are running v6.22 of root; v6.26 exists. TGeoNavigator hasn’t changed

between the versions, but maybe the real issue is in some other, underlying
code.

3

Shown by Anezka in Collab
week

• The strip spitter algorithm really wasn’t working that well and was
producing ghost hits which backtracked to MCParticles which were
physically far away.
• Fundamentally, the basic idea is sound. Our strip segmentation is smaller

than our resolution from photon timing. But we really need to work out an
algorithm that is based on our tiles/layer geometry.

• I turned it off by default. (Vivek had independently turned it off a long
time ago)

• The speed of light in the scintillator was still 1. This meant that the
readout simulation put the pulses at the wrong point in time, and the
reco exactly cancelled this blunder. But if the pulse’s location was
reconstructed beyond the end of the strip, it gets pushed to be back
inside the strip in reco – that is sensible if the reason for reconstruction
beyond the end of the strip is readout noise.

4

Shown by Anezka in Collab
week

• The reconstruction geometry data is in the gdml files. The algorithms
to manipulate it are in (1) Geometry/GeometryCore.* and (2)
Geometry/ChannelMapAlgs/* where there is a different piece of code
for each particular type of geometry. The data and the methods are
connected by having the right entries in certain fcl files.
• The code had a hard-wired assumption about what was in the gdml file.
• Another bug, discussed later, is of the same sort; the code has hard-wired

assumptions about the data.
• This is far from an optimal scheme, but a rebuild is a large undertaking.
• And we are not, I think, ready to settle on our calorimetry geometry for all

time. That decision will be very helpful in such a rebuild. We’d only have
to get one version to be perfect.

5

More recent fixes

• A not-very frequent bug in the track vertexing which happened when
trying to invert a singular matrix was found. Fix was just to put it into
a try . . . catch block and not create a vertex.

• Bug reported by Vivek on 21 Feb, where digiHits are not reconstructed
as simHits, was tracked down to octogonal geometry algorithms in
Geometry/ChannelMapAlgs applied to dodecagonal geometry data on
Geometry/gdml.
• But! This might not improve things, as in debugging this I saw that some

of the calorimeter cells are not sensibly located in Endcap vs. Barrel. So a
fixed algorithm could be exposing more bad data.

• The anatree branch TrajMCPIndex was being incorrectly
computed. This bug has been there since it was added to the anatree.

• Fixed the fact that the geometry routines PointInECALBarrel and
PointInECALEndcap did not actually check if the point is in the ECAL
at all. (It didn’t have to before there was MuID).

6

More recent fixes

• Since we aren’t strip splitting, we get hit time from SiPMs to locate the
hit. I discovered & fixed a case where time resolution put the hit at the
very end of a strip; then GeometryCore::getStripLength locates the
hit as outside the strip and gives you some other length rather than the
strip length, which give you the wrong hit time in the Reco and then
the BackTracker thinks you’ve got an out of hit time and fails to track
all the cluster energy back to the primary particle.

7

A bunch of upgrades

• During a momentary epileptic fit in ifdh , I switched GENIEGen.fcl to
get the (November 2017 optimized) optimized flux via direct copy from
/cvmfs/dune.osgstorage.org/pnfs/fnal.gov/usr/dune/persistent/
stash/Flux/...
rather than using ifdh to take it from
/pnfs/dune/persistent/users/ljf26/...

• If a proton hit a nucleus in the calorimeter, and that interaction
produced a neutron which then traveled through the calorimeter and
then made another cluster which you fed to the backtracker... the
backtracker used to return the proton. Now it returns the neutron,
unless you change a new fcl parameter in some file or another

• BackTracker README.rtf is updated; README.md is gone. but only until
somebody decides they want it.

8

A bunch of upgrades

• Muon ID added to BackTracker!

Some info about how this works:
In readoutsim, energy deposits are tagged to the MCParticle
which creates it.

BackTrackerCore::ClusterToMCParticles makes a list of all the
MCParticle contributions and sorts them largest to smallest.

For each contribution used to take each MCParticle and work its
way up the tree of MC decays until it found a particle which
originated in the gas, using BackTrackerCore::FindTPCEve.

Now, if the cluster is in the MuID, it looks for a particle which
originates in either the gas or ECAL, using
BackTrackerCore::FindECALEve.

9

A bunch of upgrades

• Added 2 methods to the geometry code, PointInMuIDBarrel and
PointInMuIDEndcap. Their use is pretty obvious.

• I cleaned up some truly perverse indentation in
Geometry/GeometryCore.* and elsewhere; spiffed up a few comments
too.

• The poorly named MCTrkID anatree branch is now called MCPTrkID.
• An upgrade from Vivek Jain: we now have anatree branchs for the

calorimeter layer of Sim and Digi hits in both the ECAL and the MuID
• Replaced /Ana/DSTproduction with new and much improved

/Ana/ExampleAnatreeUse. Consider using the (small) analysis
framework in this area if you are launching on a new anatree based
study.

• I removed the coherent pion analysis code from the anatree. It really
doesn’t belong there and nobody’s using it either.

• Still have the dE/dx code here, though. It does need work before it can
be put into the reco code.

10

Next

1. Tune the clustering parameter using electrons in
events with overlays.

2. Spend some time looking at track reco failures.
1. Maybe we should just throw some packaged algorithm at our

tracking?
2. If the track reco failure level gets low enough, try dE/dx again.

3. Retune the ECAL – reco track matching
4. Take another go at identification of νe events
5. As we get results from TOAD re the pulse shape,

incorporate them into the TPC simulation.

11

Appendix of Heinous Details

• Each GENIEGen module calls the GENIEHelper constructor, from line 204
of the GENIEGen constructor. It feed as an argument the geometry manager
in the geometry service also created in the GENIEHelper constructor. The
two calls to the service provider at line 185 of GENIEGen::GENIEGen
evidently create different services, both of which contain pointers to the
ROOT global variable gGeoManager, which is defined and initialized in
the TGeoManager class. I am not sure how our GeometryCore creates the
(presumably only) instance of the TGeoManager class though.
• Then GENIEGen::beginJob() calls
GENIEHelper::InitializeGeometry() twice, once for each generator. It
seems to run the same way each time, using the same gGeoManager but
creating different GENIEHelper::fGeomD values for each art module.
• Then GENIEHelper::Sample(…) is called from GENIEGen::produce(…)
and seems OK, as far as I can tell. It’s called many times for each event;
first it is called with the first instance of GENIEHelper, and then
subsequently with the other instance of GENIEHelper.

12

Appendix of Heinous Details

• When we go to create energy deposits in GArG4, we fail. What happens
is that at e.g. line 111 of EnergyDepositAction::SteppingAction(…) or
similar lines in AuxDetAction::ECALSteppingAction(),
AuxDetAction::MuIDSteppingAction() or other AuxDetAction stepping
actions, the call to fGeo->FindNode(…) doesn’t do what it should. The
result is that no energy deposits are made and the subsequent readout
simulation, reconstruction and analysis jobs have empty outputs.
• The failure is like so: the stepping action method calls the
GeometryCore::FindNode(…) which is a 1-line wrapper to ROOT global
gGeoManager. I’ve gone into the ROOT code in TGeoManager, and see that
it calls TGeoNavigator::FindNode(Double_t, Double_t, Double_t). At
line 1513 of TGeoNavigator.cxx, the TGeoNavigator::SearchNode(…)
method is called and it always returns 0. I can’t figure out why.
Something with the fLevel variable?

