DUNE TMS MAGNET

- ‘Short Stack' Design
- Magnetic Flux Density Comparison

J. White, Guosheng Ye

Argonne National Laboratory 29 March 2023

SUMMARY

- Current magnet design review
- Proposed 'short-stack' magnet review
- Vertical plate dimension comparison
- Horizontal plate dimensions
- Guosheng's 'Magnetic Flux Density Comparison'

CURRENT MAGNET DESIGN

CURRENT MAGNET DESIGN

- 100 vertical layers of steel plates with a 40 mm gap between layers for detector modules.
- Plates directly supported by structure at the bottom.
- 40 layers of 15 mm plates in front.
- 60 layers of 40 mm plates in back.
- Total approximate weight of steel plates is 958 Tons.

CURRENT MAGNET DESIGN

- Typical conductor coil for outside plates is shown.

‘SHORT STACK’ MAGNET DESIGN

'SHORT STACK’ MAGNET DESIGN

- Same number (100) and thickness of vertical layers of steel plates.
- The shorter vertical plates are supported by a stack of horizontal plates.
- 29 layers of 25.4 mm thick horizontal plates are directly supported by structure at the bottom.
- Total approximate weight of steel plates is 1,140 Tons (vs. 958).
- Total approximate weight of vertical steel plates is 815 Tons.

VERTICAL PLATE DIMENSIONS

- 'Short Stack' plates were trimmed at bottom of lower coil notch.

Current
Design

'Short Stack'
Design

HORIZONTAL PLATE DIMENSIONS

- First layer of horizontal plates is shown.
- Plates are 146.5 in $\times 272$ in x 1 in thick.
- Plates are just over 12 ft wide so can most likely be shipped on a flatbed semi.
- Gap between plates in magnetic analysis is 0.20 in .

MAGNETIC FLUX DENSITY RESULTS COMPARISON

Guosheng Ye

MODEL INFORMATION

Green/gray: Minos steel plates
Brown: Bronze bars
inside frame: computation domain, plates + bars + air Padding: 200\%

EXCITATION INFORMATION

(a)

(b)

(e)

(c)

Current $=30,000 \mathrm{~A}$

LAYERS OF INTEREST

$\mathbf{1}^{\text {st }}$ layer, one central plate $\mathbf{+ 2}$ side plates
" B " distribution on the $20^{\text {th }} 15 \mathrm{~mm}$ thick plate (Magnitude)

(a) Old

(b)

New

"B" ALONG PATHS

(OLD MODEL, 20 ${ }^{\text {TH }} 15 \mathrm{MM}$ THICK PLATE)

"B" ALONG PATHS

(NEW MODEL, 20TH 15MM THICK PLATE)

" B " distribution on the $20^{\text {th }} 15 \mathrm{~mm}$ thick plate (Vector)

(a)

Old

(b)

New
"B_vertical" distribution on the $20^{\text {th }} 15 \mathrm{~mm}$ thick plate

B_x $^{\|l\|}$	
Max:	3.185
	3.20
	2.55
	1.90
	1.25
	0.60
	-0.05
	-0.70
-1.35	
	-2.00
	-2.65
	-3.30
Min: -3.201	

(a)

(b)

New

"B_VERTICAL" ALONG PATHS
 (OLD MODEL, 20TH 15MM THICK PLATE)

For the segment with arrows at two ends, average and
standard deviation $\left.n_{i}(\neq)_{n}\right) \dot{x}_{i}$

$$
\sqrt{\frac{\sum_{i=1}^{i=n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

	Path 1- $\mathbf{1}$	Path 1- $\mathbf{2}$	Path 1- $\mathbf{3}$
Ave.	1.3702	-1.2792	-1.2691
St. Dev.	0.0806	0.0446	0.0174

"B_VERTICAL" ALONG PATHS

(NEW MODEL, 20TH 15MM THICK PLATE)

For the segment with arrows at two ends, average and
standard deviatiqn $n_{i \neq T}\left(T_{n}\right) \dot{x}_{i}$

	Path 2-1	Path 2-2	Path 2-3
Ave.	1.5674	-1.5206	-1.5722
St.Dev.	0.1928	0.1663	0.1872

" B " distribution on the $70^{\text {th }} 40 \mathrm{~mm}$ thick plate

 (Magnitude)
(a)

"B" ALONG PATHS

(OLD MODEL, 70TH 40MM THICK PLATE)

Δ

"B" ALONG PATHS

(NEW MODEL, 70TH 40MM THICK PLATE)

" B " distribution on the $70^{\text {th }} 40 \mathrm{~mm}$ thick plate

(Vector)

(a)

Old

(b)

New
"B_vertical" distribution on the $70^{\text {th }} 40 \mathrm{~mm}$ thick plate

B_vert
Max: 5.059
5.06
2.83
2.16
1.49
0.82
0.15
-0.52
-1.19
-1.86
-2.53

(a)
(b)

Old
New

"B VERTICAL" ALONG PATHS

For the segment with arrows at two ends, average and
standard deviatiqn $n_{i}\left(\Psi_{n}\right):$

	Path 3-1	Path 3-2	Path 3-3
Ave.	1.1828	-1.1281	-1.1155
St. Dev.	0.0695	0.0202	0.0122

"B_VERTICAL" ALONG PATHS

(NEW MODEL, 70TH 40MM THICK PLATE)

Path 4-1 Path 4-2 Path 4-3

For the segment with arrows at two ends, average and
standard deviation $n_{i}(\neq \hbar) \dot{x}_{i}$

$$
\sqrt{\frac{\sum_{i=1}^{i=n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

	Path 4-1	Path 4-2	Path 4-3
Ave. (T)	1.5296	-1.4863	-1.5305
Stan. Dev.	0.1963	0.1704	0.1954

Front-old

Back-old

Front-new

Back-new

Front-old

Back-old

B_ver_contour
Max: 5.093
6.0
4.8
3.6
2.4
1.2
0.0
-1.2
-2.4
-3.6
-4.8
-6.0
Min: -5.724

Front-new
B_ver

Back-new

Cross section view of "B"

Old model

New model

Cross section view of "B"

New model

Cross section view of "B_vertical"

Old model

New model

Cross section view of "B_vertical"

BACKUP SLIDES

Δ

Δ

Insulation details

- Conductors will wrapped in insulation.
- G-10 will be used to insulate at connections.

