New/updated plots

Jeremy Fleishhacker Chris Marshall University of Rochester 3 April, 2023

Context

- "Precision measurements" study was presented many times last summer
- Uses TDR analysis, but focusing on resolving degeneracies in parameter measurements
- Paper (DocDB-26640) went through LBL WG review
 - There is one lingering issue that is being worked on
 - A Feldman-Cousins analysis of the "theta13 tension" has revealed some strange pathologies due to fits getting stuck in local minima that has taken a long time to sort out
- Jeremy Fleishhacker did most of this work and is giving a contributed talk at APS in 2 weeks
- We would like to approve some of the plots in the paper for his talk

4D allowed regions

 Previously we showed the 2D projections of the best fit points

 This is showing only the 90% allowed region(s) based on this, and comparing the 100 vs 1000 kt-MW-yrs

• True point is

Hypothetical tension with reactor theta13 measurement

- Suppose θ_{13} as measured by LBL experiments differs from 0.088, i.e. due to non-unitarity, or some NSI matter effect
- What is the significance for DUNE to be sensitive to this
- Cannot use the reactor constraint to establish θ₂₃
 octant, so for non-maximal values there are dips where the wrong-octant solution becomes preferred

2D Asimov scans with different true points

Shows how θ₁₃

 resolution depends
 on true θ₂₃, and
 how wrong-octant
 regions are
 correlated with θ₁₃
 allowed regions

 With 1000 kt-MWyrs, we can resolve this at 90% but not at 3σ for some true points