The Race for the Neutrino Mass Ordering Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

Stephen Parke

꿏

U_pdg

The Race for the Neutrino Mass Ordering Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

Stephen Parke

both quark and lepton sectors; and ...

Quarks $J = (3.08 \pm 0.14) \times 10^{-5}$ also used in SMEFT

Stephen Parke

3

baseline reactor electron-antineutrino disappearance, providing the first detection of CP violation in the lepton sector.

And the Daya Bay and RENO collaborations for the observation of shortdetermination of the neutrino mixing angle Θ_{13} , which paves the way for the

$$\begin{split} |\Delta m_{ee}^2| &= 2.52 \ (\pm 2.4\%) \times 10^{-3} \ \epsilon \\ &\text{note:} \quad \frac{\Delta m_{21}^2}{|\Delta m_{ee}^2|} = 3.0\% \\ \nu_e \text{ average of } \Delta m_{31}^2 \text{ and } \Delta m_{32}^2 \\ \Delta m_{ee}^2 &\equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m \\ &\text{Nunokawa, SP, Zukanovich hep/0503283} \\ \epsilon \text{ same } |\Delta m_{ee}^2| \text{ within } 2.4\% \end{split}$$

Nu MO

5/12/2023

Outline of the MO Race

The Neutrino Mass Ordering Question: • Current Status: T2K, NOvA, Daya Bay, SK Mid-Decade: UNO phase I • Early Next Decade: JUNO phase II, DUNE

Nu MO

5/12/2023

massive_neutrinos.nb | 5

NO = Graphics[{Inset[nu1, $\{0, 0\}$], Inset[nu2, $\{0, 0.55\}$], Ins

5/12/2023

5/12/2023

Outline of the MO Race

• Current Status: T2K, NOvA, Daya Bay, SK

• Appearance

• Disappearance

Combined

Stephen Parke

Correlations btw

Stephen Parke

 $u_{\mu}
ightarrow
u_{e} \quad ar{
u}_{\mu}
ightarrow ar{
u}_{e}$

arXiv:hep-ph/020417

T2K & NOvA

SK event samples

• O(45%) change in electron-like event rate between $\delta_{CP} = +\pi/2$ and $\delta_{CP} = -\pi/2$

T2K NO prefer by ~2 units of χ^2

Stephen Parke

Number of Events proportional to Oscillation Probability

NOvA NO prefer by ~1 unit of χ^2

5/12/2023

https://doi.org/10.5281/zenodo.6683827

Kelly, Machado, SP, Perez, Zukanovich 2007.08526 plus other papers

COMBINED

IO prefer by ~1.6 unit of $\Delta \chi^2$

Another possible way to determine the Neutrino Mass Hierarchy

Hiroshi Nunokawa¹,* Stephen Parke²,[†] and Renata Zukanovich Funchal^{3‡} Also PRD

arXiv:hep-ph/0503283v1 29 Mar 2005

Introduced Δm_{ee}^2 and $\Delta m_{\mu\mu}^2$ for disappearance experiments: and that $|\Delta m_{ee}^2| > |\Delta m_{\mu\mu}^2|$ implies NO few % difference $|\Delta m^2_{ee}| < |\Delta m^2_{\mu\mu}|$ implies IO

NPZ'05

NPZ'05 in a Nutshell

$\bar{\nu}_e$ disappearance at an L/E ~ 0.5 km/MeV

 $P(
u_e
ightarrow
u_e) = 1 - P_{\odot} - \sin^2 2 heta_{13} (\cos^2 heta_{12} \sin^2 \Delta_{31} + \sin^2 heta_{12} \sin^2 \Delta_{32})$ $pprox 1 - P_{\odot} - \sin^2 2 heta_{13}(\sin^2 \Delta_{3i} + \mathcal{O}(\Delta_{21}))$ i = 1 or 2 $\approx 1 - P_{\odot} - \sin^2 2\theta_{13} (\sin^2 \Delta_{ee} + \mathcal{O}(\Delta_{21}^2))$ **note "2"**

$$\Delta_{21} = \left(\frac{\Delta m_{21}^2}{\Delta m_{31}^2}\right) \Delta_{31} = 0.03 \ \frac{\pi}{2}$$

$$\Delta m_{ee}^2 \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12}$$
 ν_e average of Δ

 $P_{\odot} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} = 0.002$ when $\Delta_{31} = \frac{\pi}{2}$

- $=\frac{1}{20}$ and therefore $\Delta_{21}^2=\frac{1}{400}$
- $_{2}\Delta m_{32}^{2} = m_{3}^{2} (c_{12}^{2}m_{1}^{2} + s_{12}^{2}m_{2}^{2})$ Δm_{31}^2 and Δm_{32}^2

For an effective Δm^2 , L/E independence is a necessary requirement !

What is Δm_{ee}^2 ?

SP

Stephen Parke

Daya Bay $\Delta m_{\rho\rho}^2$ Saga

arXiv:1601.07464

17

 $\Delta m^2_{\mu\mu} \equiv rac{|U_{\mu1}|^2 \Delta m^2_{31} + |U_{\mu2}|^2 \Delta m^2_{32}}{|U_{\mu1}|^2 + |U_{\mu2}|^2}$ $\approx \Delta m_{ee}^2 - (\cos 2\theta_{12} - \sin \theta_{13} \cos \delta) \Delta m_{21}^2$

 $|\Delta m^2_{ee}| > |\Delta m^2_{\mu\mu}|$ implies NO $|\Delta m_{ee}^2| < |\Delta m_{\mu\mu}^2|$ implies IO

Nunokawa, SP, Zukanovich hep/0503283 this is in vacuum, but for ν_{μ} disappearance matter effects are very small due to cancellations between $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ for θ_{13} effects:

 $|U_{\mu3}|^2 (1 - |U_{\mu3}|^2) = s_{23}^2 c_{23}^2 - s_{13}^2 \cos 2\theta_{23} + s_{13}^4 s_{23}^4$

both s_{13}^2 and $\cos 2\theta_{23}$ are small.

u_{μ} average of Δm_{31}^2 and Δm_{32}^2

 $(\sin 2\theta_{12} \tan \theta_{23} \approx 1)$

 ν_e Disappearance: $|\Delta m_{ee}^2|$ same for both orderings Daya Bay:

$-\Delta m_{32}^2 |_{DB}^{IO} = \Delta m_{31}^2 |_{DB}^{NO} + \cos 2\theta_{12} \Delta m_{21}^2$

$\cos 2\theta_{12} \approx 0.40$

Unchanged if $31 \leftrightarrow 32$ in either or both MO's

Stephen Parke

 ν_{μ} Disappearance:

 $|\Delta m^2_{\mu\mu}|$ same for both orderings NOvA, T2K:

 $-\Delta m_{32}^2 |_{udis}^{IO} = \Delta m_{31}^2 |_{udis}^{NO} - \cos 2\theta'_{12} \Delta m_{21}^2$

 $\cos 2\theta_{12}' = \cos 2\theta_{12} - 2s_{13}\cos\delta \approx 0.40 - 0.30\cos\delta$

If NO then 0 $(\Delta m_{32}^2|_{\mu dis}^{IO} - \Delta m_{32}^2|_{DB}^{IO}) + (\Delta m_{31}^2|_{\mu dis}^{NO} - \Delta m_{31}^2|_{DB}^{NO}) = (2.4 - 0.9\cos\delta)\% \ \Delta m_{ee}^2$ 1.5 to 3.3 %

 $\Delta m_{32}^2 |_{\mu dis}^{IO} - \Delta m_{32}^2 |_{DB}^{IO} | \Delta m_{31}^2 |_{\mu dis}^{NO} - \Delta m_{31}^2 |_{DB}^{NO}$ ≈ 0 $(2.4 - 0.9 \cos \delta)\%$ eeee

5/12/2023

 $\mathbf{\vee}$

Nu MO

μμ

Hinting at NO and $\cos \delta \leq 0$

Outline of the MO Race

• Mid-Decade: JUNO phase I

Stephen Parke

• Precision measurement of Δm_{ee}^2 and $(\sin^2 \theta_{12}, \Delta m_{21}^2)$ (update 2204.13249)

5/12/2023

So 120 100 MeV 80 Step 🖻

JUNO

Time Evolution of JUNO measurements

Preliminary NPZ++

 $\Delta m_{32}^2 [10^{-3} \text{ eV}^2] \qquad \Delta m_{31}^2 [10^{-3} \text{ eV}^2]$

- - Comb.

2.7

Outline of the MO Race

Early Next Decade:
 JUNO phase II
 JUNO:1507.05613. / FPTZ: 2107.12410

• DUNE

Stephen Parke

JUNO Spectra assuming $|\Delta m_{32}^2|$ is the same for both NO/IO.

If you let $|\Delta m_{32}^2|$ (*IO*) be slightly different than $|\Delta m_{32}^2|$ (*NO*) then the θ_{13} wiggles sit more on top of one other, significantly reducing the $\Delta \chi^2$.

: 2. Energy spectra expected to be recorded by JUNO after 2000 days of data ing, in case of no oscillation, and in case of normal and inverted mass hierarchy ootheses.

Petcov et al: hep-ph/0112074, hep-ph/0306017, arXiv:1701.06328, PDG-2018

Minakata, Nunokawa, SP, Zukanovich hep/0701151

Stephen Parke

 $\Phi(\Delta_{21} = \pi/2) = \pi \sin^2 \theta_{12}$

Nu MO

5/12/2023

JUNO Events Spectra

3.0 % resolution

Forero, SP, Ternes, Zukanovich 2107.12410

Stephen Parke

If $|\Delta m_{31}^2|(IO) = |\Delta m_{31}^2|(NO)$, then $|\Delta m_{ee}^2|(IO) = 2.578$ If $|\Delta m_{32}^2|(IO) = |\Delta m_{31}^2|(NO)$, then $|\Delta m_{ee}^2|(IO) = 2.503$

Real Baseline Distribution + Backgrounds

Reactor	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	TS-C1	TS-C2	DB	HZ
Power (GW_{th})	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4
Baseline (km)	52.74	52.82	52.41	52.49	52.11	52.19	52.77	52.64	215	265

Stephen Parke

Energy Resolution Effect:

業 Parameter Sensitivity: $\Delta \chi^2$ distributions

16 16 2.65 14 14 eV² 2.60 12 12 M [10] 2.55 10 -10 true 2.50 - 8 8 Δm^2_{ee} 2.45 6 - 6 2.40 0.020 0.022 0.024 $\sin^2 \theta_{13,\, {
m true}}$ Daya Bay results moved best fit point from * to +

inergy Response

JUNO probability of determining Mass Ordering

Outline of the MO Race • Early Next Decade: • DUNE

Stephen Parke

5/12/2023

Nu MO

38

Experimentalist Bi-Event Plot For DUNE

-π/**2**

Mass Ordering Sensitivity

Mass Ordering Sensitivity

one (two) year > 3 σ (> 5 σ) for all values of δ_{CP}

- Circa Nu 2026: Global fits, including JUNO's precision Δm_{ee}^2 measurement will give us Neutrino Mass Ordering > 3σ .
 - Precision Disappearance Δm^2 measurements will make significant contributions (NPZ '05)
- Circa Nu 203x: JUNO & DUNE will each have Neutrino Mass Ordering > 3σ in a single experiment - a race !
- A Year Later: DUNE > 5σ for Neutrino Mass Ordering

Summary:

41

- Gedanken exp: Braidwood, BTeV, SSC
 - Using 2014-P5 metric, DUNE phase I is not a "Success"

Comment for P5: "Success" builds on "Success"

- Lots of examples:

for guaranteed "Success" full DUNE phase II + ACE are needed

This is building for future "Successes"

43

Daya Bay:

 $\sin^2 \Delta_{YY} \equiv \cos^2 \theta_{12} \, \sin^2 \Delta_{31} + \sin^2 \theta_{12} \, \sin^2 \Delta_{32}.$

which implies that

$$\Delta m_{YY}^2 \equiv \left(\frac{4E}{L}\right) \arcsin\left[\sqrt{\left(\cos^2\theta_{12}\sin^2\Delta_{31} + \sin^2\theta_{12}\sin^2\Delta_{32}\right)}\right]$$

2.

$$\Delta m_{ZZ}^2 \equiv \frac{2E}{L} \left(\Delta_{31} + \Delta_{32} + \arctan[\cos 2\theta_{12} \tan \Delta_{21}] \right)$$

3.

$$\Delta m_{ee}^2 \equiv \frac{\partial}{\partial \left(L/2E\right)} \left(\Delta_{31} + \Delta_{32} + \arctan\left[\cos 2\theta_{12} \tan 2\theta_{12}\right]\right)$$

Stephen Parke

NPZ'05

Nu MO

5/12/2023

 ν_e Disappearance: ν_{μ} Disappearance: $|\Delta m_{ee}^2|$ same for both orderings Daya Bay: NOvA, T2K: $\pm = NO/IO$ $\Delta m_{32}^2 = \pm |\Delta m_{ee}^2| - \cos^2 \theta_{12} \Delta m_{21}^2$ $\Delta m_{32}^2 = \pm |\Delta m_{\mu\mu}^2| - \sin^2 \theta_{12}' \Delta m_{21}^2$ $\Delta m_{31}^2 = \pm |\Delta m_{ee}^2| + \sin^2 \theta_{12} \Delta m_{21}^2$ $\Delta m_{31}^2 = \pm |\Delta m_{\mu\mu}^2| + \cos^2 \theta_{12}' \Delta m_{21}^2$ $-\Delta m_{32}^2 \Big|_{DB}^{IO} = \Delta m_{31}^2 \Big|_{DB}^{NO} + \cos 2\theta_{12} \Delta m_{21}^2$ $-\Delta m_{32}^2 \Big|_{\mu dis}^{IO} = \Delta m_{31}^2 \Big|_{\mu dis}^{NO} - \cos 2\theta_{12}' \Delta m_{21}^2$ $\cos 2\theta_{12}' = \cos 2\theta_{12} - 2s_{13}\cos\delta \approx 0.40 - 0.30\cos\delta$ $\cos 2\theta_{12} \approx 0.40$ If IO then 0 If NO then 0 $\Delta m_{31}^2 |_{DB}^{NO}) = (2.4 - 0.9 \cos \delta)\% \ \Delta m_{ee}^2$ $(\Delta m_{32}^2)_{\mu dis}^{IO} - \Delta m_{32}^2|_{DB}^{IO})$ 1.5 to 3.3 % Unchanged if $31 \leftrightarrow 32$ in either or both MO's

Stephen Parke

 $|\Delta m^2_{\mu\mu}|$ same for both orderings

DUNE bi-Probability Diagrams:

Stephen Parke

Normal Ordering — Inverted Ordering

5/12/2023

10

Nu MO

46

Vacuum v Matter:

