The Race for the Neutrino Mass Ordering

Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

The Race for the Neutrino Mass Ordering

Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

Cecilia Jarlskog for the discovery of an invariant measure of CP violation in both quark and lepton sectors; and ...

Jarlskog Invariant: I985

$$
=0, \pm 1
$$

Quarks

$$
J=(3.08 \pm 0.14) \times 10^{-5}
$$ also used in SMEFT

$$
\begin{gathered}
J_{i j}^{\alpha \beta} \equiv \Im\left\{U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right\}=J \sum_{k, \gamma} \epsilon_{i j k} \epsilon_{\alpha \beta \gamma} \\
J_{p d g}=s_{23} c_{23} s_{13} c_{13}^{2} s_{12} c_{12} \sin \delta \\
J_{l}=(3.36 \pm \mathbf{0 . 0 6}) \sin \delta_{C P} \times \mathbf{1 0}^{-\mathbf{2}}
\end{gathered}
$$

And the Daya Bay and RENO collaborations for the observation of shortbaseline reactor electron-antineutrino disappearance, providing the first determination of the neutrino mixing angle Θ_{13}, which paves the way for the detection of CP violation in the lepton sector.

$$
\left|U_{e 3}\right|^{2}=\sin ^{2} \theta_{13}=0.0215(\pm 2.8 \%)
$$

$\left|\Delta m_{e e}^{2}\right|=2.52(\pm 2.4 \%) \times 10^{-3} \mathrm{eV}^{2}$ note: $\quad \frac{\Delta m_{21}^{2}}{\left|\Delta m_{e e}^{2}\right|}=3.0 \%$

$$
\nu_{e} \text { average of } \Delta m_{31}^{2} \text { and } \Delta m_{32}^{2}
$$

$\Delta m_{e e}^{2} \equiv \cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2}$
Nunokawa, SP, Zukanovich hep/0503283
NO and IO orderings have same $\left|\Delta m_{e e}^{2}\right|$ within 2.4\%

Outline of the MO Race

- The Neutrino Mass Ordering Question:
- Current Status: T2K, NOvA, Daya Bay, SK
- Mid-Decade: JUNO phase I
- Early Next Decade: JUNO phase II, DUNE

Neutrino Mass EigenStates or Propagation States:

$$
\text { Propagator } \nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}
$$

V_{1}	V2	V3
most $\nu_{e} 68 \%$	$30 \% \nu_{\mathbf{e}}$	least $\nu_{e} \mathbf{2 \%}$
$\cos \delta, \theta_{23}$	$\cos \delta, \theta_{23}$	θ_{23}
$\nu_{e}=\square$	$\nu_{\mu}=\square$	$\nu_{\boldsymbol{\tau}}=$
Solar Exp, SNO	SuperK, K2K,T2K	Unitarity
KamiLAND	MINOS, NOvA	SK, Opera
Daya Bay, RENO, ...	ICECUBE	ICECUBE ?

粡
$\left|U_{e 2}\right|^{2} \approx 0.3 \approx \frac{C C}{C C} \quad \nu_{1}, \nu_{2}$ Mass Ordering:
-solar mass ordering mass

$$
\left|\Delta m_{21}^{2}\right|=\left|m_{2}^{2}-m_{1}^{2}\right|=7.5 \times 10^{-5} \mathrm{eV}^{2} \quad L / E=15 \mathrm{~km} / \mathrm{MeV}=15,000 \mathrm{~km} / \mathrm{GeV}
$$

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$$
\left|\Delta \boldsymbol{m}_{\mathbf{3 1}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{2}-\boldsymbol{m}_{1}^{2}\right|=\mathbf{2 . 5} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{eV}^{2} \quad L / \boldsymbol{E}=0.5 \mathrm{~km} / \mathrm{MeV}=500 \mathrm{~km} / \mathrm{GeV}
$$

unknown: SK,T2K, NOvA, JUNO, ICECUBE, DUNE, KNO, ...

$$
\nu_{e}=\square \quad \nu_{\mu}=\square \quad \nu_{\tau}=
$$

Outline of the MO Race

- Current Status: T2K, NOvA, Daya Bay, SK
- Appearance
- Disappearance
- Combined

Correlations btw

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

T2K/HK

NOvA

DUNE
Same L/E as NO $\nu \mathrm{A}$

arXiv:hep-ph/020417

T2K \& NOvA

Number of Events proportional to Oscillation Probability

SK event samples

- $\mathrm{O}(45 \%)$ change in electron-like event rate between $\delta_{C P}=+\pi / 2$ and $\delta_{C P}=-\pi / 2$

T2K NO prefer by ~ 2 units of χ^{2}
https://doi.org/10.5281/zenodo.6683827

IO prefer by ~ 1.6 unit of $\Delta \chi^{2}$

Kelly, Machado, SP, Perez, Zukanovich 2007.08526 plus other papers

10

By construction $\Delta \chi_{\text {min }}^{2}$ for either (or both) NO or IO at zero

Another possible way to determine

the Neutrino Mass Hierarchy

Hiroshi Nunokawa ${ }^{1}$, ${ }^{*}$ Stephen Parke ${ }^{2}{ }^{\dagger}$ and Renata Zukanovich Funchal ${ }^{3 \ddagger}$
Also PRD
arXiv:hep-ph/0503283v1 29 Mar 2005
NPZ’05

Introduced $\Delta m_{e e}^{2}$ and $\Delta m_{\mu \mu}^{2}$ for disappearance experiments:

$$
\begin{aligned}
\text { and that } \quad & \left|\Delta m_{e e}^{2}\right|>\left|\Delta m_{\mu \mu}^{2}\right| \text { implies NO } \\
& \left|\Delta m_{e e}^{2}\right|<\left|\Delta m_{\mu \mu}^{2}\right| \text { implies IO } \quad \text { few \% difference }
\end{aligned}
$$

NPZ’05 in a Nutshell

$\bar{\nu}_{e}$ disappearance at an $\mathrm{L} / \mathrm{E} \sim 0.5 \mathrm{~km} / \mathrm{MeV}$

$$
\Delta_{i j}=\frac{\Delta m_{i j}^{2} L}{4 E}
$$

$$
\begin{aligned}
P\left(\nu_{e} \rightarrow \nu_{e}\right) & =1-P_{\odot}-\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right) \\
& \approx 1-P_{\odot}-\sin ^{2} 2 \theta_{13}\left(\sin ^{2} \Delta_{3 i}+\mathcal{O}\left(\Delta_{21}\right)\right) \quad i=1 \text { or } 2 \\
& \approx 1-P_{\odot}-\sin ^{2} 2 \theta_{13}\left(\sin ^{2} \Delta_{e e}+\mathcal{O}\left(\Delta_{21}^{2}\right)\right) \longleftarrow \text { note " } 2 "
\end{aligned}
$$

$$
\Delta_{21}=\left(\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right) \Delta_{31}=0.03 \frac{\pi}{2}=\frac{1}{20} \text { and therefore } \Delta_{21}^{2}=\frac{1}{400}
$$

$$
\Delta m_{e e}^{2} \equiv \cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2}=m_{3}^{2}-\left(c_{12}^{2} m_{1}^{2}+s_{12}^{2} m_{2}^{2}\right)
$$

ν_{e} average of Δm_{31}^{2} and Δm_{32}^{2}

$$
P_{\odot}=\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}=0.002 \text { when } \Delta_{31}=\frac{\pi}{2}
$$

Daya Bay $\Delta m_{e e}^{2}$ Saga

For an effective $\Delta m^{2}, \quad \mathrm{~L} / \mathrm{E}$ independence is a necessary requirement!

$$
\begin{gathered}
\text { What is } \Delta m_{e e}^{2} ? \\
\text { SP arXiv:1601.07464 }
\end{gathered}
$$

ν_{μ} disappearance at an $\mathrm{L} / \mathrm{E} \sim 500 \mathrm{~km} / \mathrm{GeV}$

$$
\begin{aligned}
\Delta m_{\mu \mu}^{2} & \equiv \frac{\left|U_{\mu 1}\right|^{2} \Delta m_{31}^{2}+\left|U_{\mu 2}\right|^{2} \Delta m_{32}^{2}}{\left|U_{\mu 1}\right|^{2}+\left|U_{\mu 2}\right|^{2}} \quad \nu_{\mu} \text { average of } \Delta m_{31}^{2} \text { and } \Delta m_{32}^{2} \\
& \approx \Delta m_{e e}^{2}-\left(\cos 2 \theta_{12}-\sin \theta_{13} \cos \delta\right) \Delta m_{21}^{2} \quad\left(\sin 2 \theta_{12} \tan \theta_{23} \approx 1\right)
\end{aligned}
$$

$\left|\Delta m_{e e}^{2}\right|>\left|\Delta m_{\mu \mu}^{2}\right|$ implies NO
$\left|\Delta m_{e e}^{2}\right|<\left|\Delta m_{\mu \mu}^{2}\right|$ implies IO
Nunokawa, SP, Zukanovich hep/0503283

華 ν_{e} Disappearance:
$\left|\Delta m_{e e}^{2}\right|$ same for both orderings Daya Bay:
ν_{μ} Disappearance:
$\left|\Delta m_{\mu \mu}^{2}\right|$ same for both orderings NOvA, T2K:

$$
\cos 2 \theta_{12} \approx 0.40
$$

$$
\cos 2 \theta_{12}^{\prime}=\cos 2 \theta_{12}-2 s_{13} \cos \delta \approx 0.40-0.30 \cos \delta
$$

If 10 then 0

If NO then 0

$\left(\left.\Delta m_{32}^{2}\right|_{\mu d i s} ^{I O}-\left.\Delta \sum_{32}^{2}\right|_{D B} ^{I O}\right)+\left(\left.\Delta m_{31}^{2}\right|_{\mu d i s} ^{N O}-\left.\Delta m_{31}^{2}\right|_{D B} ^{N O}\right)=(2.4-0.9 \cos \delta) \% \Delta m_{e e}^{2}$

$$
\text { Unchanged if } 31 \leftrightarrow 32 \text { in either or both MO's }
$$

華
$\left(\left.\Delta m_{32}^{2}\right|_{\mu d i s} ^{I O}-\left.\Delta m_{32}^{2}\right|_{D B} ^{I O}\right)+\left(\left.\Delta m_{31}^{2}\right|_{\mu d i s} ^{N O}-\Delta m_{31}^{2} \mid{ }_{D B}^{N O}\right)=(2.4-0.9 \cos \delta) \% \Delta m_{e e}^{2}$

	$\left.\Delta m_{32}^{2}\right\|_{\mu d i s} ^{I O}-\left.\Delta m_{32}^{2}\right\|_{D B} ^{I O}$	$\left.\Delta m_{31}^{2}\right\|_{\mu d i s} ^{N O}-\left.\Delta m_{31}^{2}\right\|_{D B} ^{N O}$
NO	$(2.4-0.9 \cos \delta) \%$	≈ 0
IO	≈ 0	$(2.4-0.9 \cos \delta) \%$

NuFIT 5.2 (2022)

NO preference with $\Delta \chi \sim 4.0$
6.5

$$
6.5 \text { approx +4.0 (SK) -I.6 (App LBL) +4.I (Dis LBL) }
$$

Outline of the MO Race

- Mid-Decade: JUNO phase I
- Precision measurement of $\Delta m_{e e}^{2}$ and $\left(\sin ^{2} \theta_{12}, \Delta m_{21}^{2}\right)$
(update 2204.I 3249)

JUNO

Fig. 1. Map of the local area around the experimental site of JUNO, located on the South-West part of the Guangzhou city in China.

Fig. 4. Schematic view of the JUNO detector.

Reactor	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	TS-C1	TS-C2	DB	HZ
Power (GW $\left.{ }_{\text {th }}\right)$	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4
Baseline (km)	52.74	52.82	52.41	52.49	52.11	52.19	52.77	52.64	215	265

Time Evolution of JUNO measurements

For JUNO: $\left|\Delta m_{e e}^{2}\right|^{I O}=1.007\left|\Delta m_{e e}^{2}\right|^{N O}$ then $(2.4-0.9 \cos \delta) \% \rightarrow(3.1-0.9 \cos \delta) \%$ and experimental uncertainty on $\left|\Delta m_{e e}^{2}\right|$ drops to $<1 \%$. (Daya Bay 2.4%).

Preliminary NPZ++

LBL comb
Comb.

带 Effect of JUNO's presicion measurement on $\Delta m_{e e}^{2}$

Outline of the MO Race

- Early Next Decade:
- JUNO phase II reproduced
- JUNO:I507.056I3. / FPTZ:2I07.I24I0
- DUNE

JUNO Spectra assuming $\left|\Delta m_{32}^{2}\right|$ is the same for both NO/IO.

If you let $\left|\Delta m_{32}^{2}\right|(I O)$ be slightly different than
$\left|\Delta m_{32}^{2}\right|(N O)$ then the θ_{13} wiggles
sit more on top of one other, significantly reducing the $\Delta \chi^{2}$.

:. 2. Energy spectra expected to be recorded by JUNO after 2000 days of data ing, in case of no oscillation, and in case of normal and inverted mass hierarchy ootheses.

Petcov et al: hep-ph/0II2074, hep-ph/03060I7, arXiv:I70I.06328, PDG-2018

$$
1-P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=4 c_{13}^{4} s_{12}^{2} c_{12}^{2} \sin ^{2} \Delta_{21}
$$

$$
+2 s_{13}^{2} c_{13}^{2}\left(1-\sqrt{1-\sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}} \cos \left[2\left|\Delta_{e e}\right| \pm \Phi\left(\Delta_{21}\right)\right]\right)
$$

Minakata, Nunokawa, SP, Zukanovich hep/070|I5 I

$$
\Phi\left(\Delta_{21}\right)=\arctan \left(\cos 2 \theta_{12} \tan \Delta_{21}\right)-\cos 2 \theta_{12} \Delta_{21}=\mathcal{O}\left(\Delta_{21}^{3}\right)
$$

$$
\Phi\left(\Delta_{21}=\pi / 2\right)=\pi \sin ^{2} \theta_{12}
$$

JUNO Events Spectra
No backgrounds, No Systematics

8 years, 26.6 GW_th

 baseline exactly 52.5 km 3.0 \% resolutionForero, SP, Ternes, Zukanovich 2107.I24I0

Real Baseline Distribution + Backgrounds

Forero, SP, Ternes, Zukanovich 2I07.I24IO

Reactor	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	TS-C1	TS-C2	DB	HZ
Power $\left(\mathrm{GW}_{\mathrm{th}}\right)$	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4
Baseline (km)	52.74	52.82	52.41	52.49	52.11	52.19	52.77	52.64	215	265

Energy Resolution Effect:

業 Parameter Sensitivity: $\Delta \chi^{2}$ distributions

Daya Bay results moved best fit point from * to +

Non-linear Energy Response

JUNO_201I. 06405

(c) Electron non-linearity

$$
E_{p}=\frac{E^{\mathrm{vis}}}{f_{\mathrm{NL}}\left(a_{1}, a_{2}, a_{3}, a_{4} ; E_{p}\right)}
$$

$$
f_{\mathrm{NL}}\left(a_{1}, a_{2}, a_{3}, a_{4} ; E_{p}\right) \equiv \frac{a_{1}+a_{2}\left(E_{p} / \mathrm{MeV}\right)}{1+a_{3} \exp \left(-a_{4}\left(E_{p} / \mathrm{MeV}\right)\right)}
$$

JUNO probability of determining Mass Ordering

Time	$\%$ on $\Delta m_{\text {atm }}^{2}$	$\overline{\mid \chi_{N O}^{2}-\chi_{I O}^{2}}$
100 days	1.0	0.25
4 years	0.3	3.4
8 years	0.2	6.7
12 Years	0.15	10.0

Outline of the MO Race

- Early Next Decade:
- DUNE

Experimentalist Bi-Event Plot For DUNE

one (two) year $>3 \sigma(>5 \sigma)$ for all values of $\delta_{C P}$

Summary:

- Circa Nu 2026: Global fits, including JUNO's precision $\Delta m_{e e}^{2}$ measurement will give us Neutrino Mass Ordering $>3 \sigma$.
- Precision Disappearance Δm^{2} measurements will make significant contributions (NPZ '05)
- Circa Nu 203x: JUNO \& DUNE will each have Neutrino Mass Ordering $>3 \sigma$ in a single experiment - a race!
- A Year Later: DUNE $>5 \sigma$ for Neutrino Mass Ordering

Comment for P5:

"Success" builds on "Success"

Lots of examples:
Gedanken exp: Braidwood, BTeV, SSC
Using 2014-P5 metric, DUNE phase I is not a "Success"

for guaranteed "Success" full DUNE phase II + ACE are needed

This is building for future "Successes"

黄

Extras

Daya Bay:

I.

$$
\sin ^{2} \Delta_{Y Y} \equiv \cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}
$$

which implies that

$$
\Delta m_{Y Y}^{2} \equiv\left(\frac{4 E}{L}\right) \arcsin \left[\sqrt{\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)}\right]
$$

2.

$$
\Delta m_{Z Z}^{2} \equiv \frac{2 E}{L}\left(\Delta_{31}+\Delta_{32}+\arctan \left[\cos 2 \theta_{12} \tan \Delta_{21}\right]\right)
$$

3.

$$
\left.\Delta m_{e e}^{2} \equiv \frac{\partial}{\partial(L / 2 E)}\left(\Delta_{31}+\Delta_{32}+\arctan \left[\cos 2 \theta_{12} \tan \Delta_{21}\right]\right)\right|_{L / 2 E=0}=\cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2}
$$

th
$\left|\Delta m_{e e}^{2}\right|$ same for both orderings Daya Bay:
ν_{μ} Disappearance:
$\overline{\left|\Delta m_{\mu \mu}^{2}\right| \text { same for both orderings }}$ NOvA, T2K:

$$
\pm=N O / I O
$$

$$
\begin{aligned}
\Delta m_{32}^{2} & = \pm\left|\Delta m_{e e}^{2}\right|-\cos ^{2} \theta_{12} \Delta m_{21}^{2} \\
\Delta m_{31}^{2} & = \pm\left|\Delta m_{e e}^{2}\right|+\sin ^{2} \theta_{12} \Delta m_{21}^{2}
\end{aligned}
$$

$$
\Delta m_{32}^{2}= \pm\left|\Delta m_{\mu \mu}^{2}\right|-\sin ^{2} \theta_{12}^{\prime} \Delta m_{21}^{2}
$$

$$
\Delta m_{31}^{2}= \pm\left|\Delta m_{\mu \mu}^{2}\right|+\cos ^{2} \theta_{12}^{\prime} \Delta m_{21}^{2}
$$

$$
-\left.\Delta m_{32}^{2}\right|_{D B} ^{I O}=\left.\Delta m_{31}^{2}\right|_{D B} ^{N O}+\cos 2 \theta_{12} \Delta m_{21}^{2}
$$

$$
-\left.\Delta m_{32}^{2}\right|_{\mu d i s} ^{I O}=\left.\Delta m_{31}^{2}\right|_{\mu d i s} ^{N O}-\cos 2 \theta_{12}^{\prime} \Delta m_{21}^{2}
$$

$$
\cos 2 \theta_{12} \approx 0.40
$$

DUNE bi-Probability Diagrams:

Normal Ordering - Inverted Ordering

Vacuum v Matter:

