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Neutrino Physics

Key Neutrino Facts:
● Neutral particles
● Primarily interact weakly

Other Neutrino Facts:
● Nearly massless
● Spin ½ leptons
● Only left-handed
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Character illustrations by AKIMOTO Yuki @ higgstan.com
https://www-he.scphys.kyoto-u.ac.jp/nucosmos/en/files/NF-pamph-EN.pdf



Neutrino Oscillations 101

● Neutrinos interact with matter as a definite flavor
● But travel through space as a superposition of all three flavors
● This flavor change is referred to as neutrino oscillation
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Neutrino Oscillations Example
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● Muon neutrino disappearance.

● Changing the mass parameter 
changes the position of the minimum.

● Changing the angle parameter 
changes the depth of the minimum.

● Oscillation probability is a function of 
neutrino energy (and propagation 
distance)
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Measuring Neutrino Energy
● Unable to measure neutrino energy 

directly

● Need to extract oscillation probability as 
a function of energy

● Must be reconstructed from observed 
particles

● Neutrino interaction model provides the 
mapping from observed variables to 
energy
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Unanswered Questions
● The neutrino oscillation formula has a term that 

violates charge-parity symmetry if it is non-zero → 
not been definitively measured (yet)

● The ordering of the neutrino mass states is 
undetermined → two possible arrangements exist
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DUNE: Deep Underground Neutrino Experiment

DUNE is a next-generation long-baseline neutrino oscillation experiment:
● High-intensity (MW-scale) neutrino beam is produced at Fermilab as part of LBNF
● Travels nearly 1300 km to a far detector (FD) at the Sanford Underground Research Facility
● Measured by a suite of near detectors (ND) about 0.5 km from the production target
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Physics of DUNE
DUNE has a wide variety of physics goals, both with neutrinos and other physics

● Measurement of neutrino oscillations from both accelerator and atmospheric neutrinos
○ Increase precision of the known oscillation parameters
○ Determine the neutrino mass hierarchy
○ Measure the value of δcp

● Diverse program of neutrino interaction measurements for different channels, targets, etc.

● Detection of solar neutrinos and neutrinos from a core-collapse supernova

● Searches for beyond the standard model physics

● Searches for proton decay

● Searches for dark matter particles
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Role of the DUNE Near Detectors
● The DUNE near detectors have three main goals:

○ Constrain systematic uncertainties for the oscillation physics program
○ Measure and monitor the beam
○ Provide input for the neutrino interaction model

● To achieve these goals, the near detector has several overarching requirements:
○ ND must have a (liquid) argon target to match the FD
○ ND must employ similar technology, i.e. a LArTPC, as the FD
○ ND must be able to promptly detect changes in the beam conditions
○ ND must have similar or better kinematic coverage as the FD
○ ND must be able to operate in the high-intensity environment close to the target
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DUNE Near Detector Complex
● Dune ND complex has three primary components:

○ ND-LAr: modular liquid argon TPC
○ Magnetized tracker:

■ Phase 1 – The Muon Spectrometer (TMS): a 
magnetized muon range detector

■ Phase 2 – Upgraded tracker: for example, a 
magnetized high-pressure TPC (ND-GAr)

○ SAND: System for on-Axis Neutrino Detection

● ND-LAr and the magnetized tracker will be movable 
off-axis → DUNE PRISM

● DUNE will be built in two phases, with Phase II 
featuring an upgrade of the near detector complex
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DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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ND-LAr
● Liquid argon TPC based on the ArgonCube 

design

● Pixel-based readout and optically separated 
modules to handle the high event rate and 
track multiplicity in the ND hall

● Light readout for measuring scintillation light 
from interactions in the liquid

● Composed of 35 modules measuring 1 m x 
1 m x 3 m (LxWxH) each all placed in a 
single cryostat
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DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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System for on-Axis Neutrino Detection (SAND)
● Primary beam monitor for the ND complex 

→ will remain permanently on-axis

● Repurposing the ECAL and magnet from 
KLOE experiment

● New central straw tube tracker with 
(hydro-)carbon target foils and orthogonal 
planes of Xe-CO2 or Ar-CO2 tubes

● Proposed option of including a small active 
LAr target in the magnetized region in front 
of the tracking region
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DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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The Muon Spectrometer (TMS)
● Phase I tracker for muons that exit ND-LAr

● Muons above ~1 GeV/c will exit ND-LAr and 
require a downstream tracker to measure 
the momentum

● Magnetized muon range detector
○ Momentum by range → resolution 

comparable to the FD
○ Magnetic field allows for sign-selection 

with 95+% accuracy

● Will move with ND-LAr as part of PRISM
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ND-GAr
● High-pressure magnetized gaseous argon 

TPC with calorimeter as an option for the 
upgraded Phase II near detector

● Still functions as the tracker for muons that 
exit the ND-LAr → measure momentum and 
charge

● Gaseous argon provides a low density 
medium to track charged particles
○ Lower tracking threshold than liquid 

argon
○ Less multiple scattering of particles

● High-pressure to provide a total 1-ton 
fiducial volume of argon as a target
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ND-GAr Snowmass whitepaper:
https://arxiv.org/abs/2203.06281
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DUNE PRISM
● Neutrino energy spectra changes as a function 

of off-axis angle

● ND-LAr plus the magnetized tracker will be able 
to travel ~30 m transverse to the beam to 
sample different off-axis angles

● Linear combinations of off-axis fluxes can be 
used to construct the far detector flux or 
Gaussian beam profiles

● Can separate the effects of flux and 
cross-section uncertainties
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DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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Motivation for ND Upgrade
● Phase I near detector is sufficient for mass 

ordering and nearly maximal δCP

● However ND upgrade is required to achieve 
ultimate 5σ sensitivity

● Without the ND upgrade, the uncertainty 
from the interaction model will become the 
limiting factor
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Snowmass white paper “DUNE Physics Summary”, arXiv:2203.06100
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ND-GAr Performance Requirements
● Classify interactions and measure particles exiting ND-LAr with performance comparable or 

exceeding the far detector → sign-select particles with a muon momentum resolution of <4% 
and constrain the energy scale to <1%

● Measure the energy spectrum and multiplicity of protons produced in neutrino interactions

● Measure the energy spectrum and multiplicity of charge pions, particularly up to three pion 
final states, produced in neutrino interactions

● Detect and measure the rate of neutral pion production for the same energy/momentum 
range for charged pions
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ND-GAr Concept Overview
● High-pressure gas TPC (HPgTPC)

○ Argon-gas mixture at 10 atm
○ 5 m diameter x 5 m length cylinder
○ 1 ton fiducial target mass

● Calorimeter surrounding the TPC (barrel 
plus end caps)

● Superconducting solenoid magnet with 
partial return yoke (SPY) with a nominal 
field of 0.5 T

● External muon tagging system
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ND-GAr Snowmass whitepaper:
https://arxiv.org/abs/2203.06281
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Baseline HPgTPC design
● Based on the ALICE TPC design:

○ 5 m diameter x 5 m length cylinder
○ Double-sided readout and drift
○ Multi-wire proportional readout 

chambers

● ALICE inner and outer readout chambers 
available for use/repurpose after ALICE 
upgrade

● Opportunity to design new readout 
chambers using different technology

● Central readout chambers need to be 
designed and built regardless
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ALCIE NIM https://doi.org/10.1016/j.nima.2010.04.042

ALICE
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ND-GAr readout technology
● Repurposing the ALICE wire readout chambers is an 

option, plus constructing new central chambers

● Could design all new chambers, either still wire 
chambers or new technology (e.g. GEMs, 
MicroMegas, etc.)

● Considering the option of a single-sided readout and 
drift region → reduces number of required chambers 
and allows for optical readout

● Studying adding an optical readout component to 
measure light produced from the interactions
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ND-GAr gas mixture
● Gas mixture still being finalized → optimizing gain, 

quenching, flammability, scintillation light, etc.

● Ar-CH4 (e.g. 90-10) mixture nominal design choice
○ At 10 atm the drift velocity at nominal electric field is a 

few cm/μs
○ Tune the methane fraction for different drift velocity 

characteristics and flammability requirements

● Noble gases scintillate in VUV band → photoelectric effect 
from UV photons causes instability in the wire chambers
○ Dopant gases like methane added to quench the 

scintillation and increase gain
○ Explore other mixtures such as Ar-CF4 to produce 

useful scintillation light
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P. Hamacher-Baumann et al.,
Phys. Rev. D 102, 033005 (2020)

From D. González-Díaz
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Charge readout electronics and DAQ
● Digitization at the readout chamber using ALICE SAMPA ASIC-based card (FNAL/Pittsburgh) 

→ ASIC can digitize whatever readout chosen for ND-GAr
● FPGA-based aggregator boards minimize the number feedthroughs in vessel (Imperial)
● Timing, interface, and power (TIP) cards aggregate signal further (Imperial)
● Lower occupancy than heavy-ion collider needs many fewer FPGAs for buffering
● First versions of all these boards have been built and total cost estimate for full ND-GAr 

would be ~£2M, down from ~$150M using heavy-ion-collider-like system
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Calorimeter ● Based on CALICE analog hadron calorimeter concept

● Two types of lead–scintillator sandwich layers
○ About 32 layers with crossed scintillator strips
○ About 8 layers using tiles for finer granularity

● Studying the physics performance of a symmetric or 
asymmetric arrangement/design for the modules

● Research and development at MPP and Mainz to 
design and prototype modules and optimize WLS 
fiber-to-SiPM coupling
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Beam direction
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Superconducting magnet
● Solenoid design with a partial return yoke, 

designed by INFN Genova and FNAL

● Return yoke has “window” cut out to minimize 
material between the TPC and ND-LAr

● Nominal 0.5 T field with 1% field 
non-uniformities

● Pressure vessel integrated into the magnet 
yoke

● Negligible stray field in SAND, a few gauss in 
ND-LAr
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Simulation and reconstruction
● Full end-to-end simulation and 

reconstruction software, GAr-Soft, is being 
used to study and characterize performance

● Muon momentum resolution from 
charged-current neutrino interactions ~2.7%

● GEANT4 optical simulations also being 
performed to study optical readout 
capabilities

● New developments include a tuned Kalman 
filter for track fitting
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ND-GAr event display

7 proton tracks!
Muon track
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Event rate and planned statistics

● The planned 1.2 (2.4) MW neutrino beam 
will produce tens to hundreds of thousands 
of events for a variety of exclusive channels 
per year

● Statistical uncertainties to be insignificant 
for most channels (eventually)

● Enables precise measurements using very 
fine kinematic binning or measurements 
with several dimensions
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DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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Low momentum tracking

● Gaseous argon target provides a low-density 
medium for particle tracking

● Proton tracking threshold is currently estimated to 
be ~5 MeV kinetic energy (roughly corresponds to 
~1 cm track length in ND-GAr)

● Very important for discrimination between 
neutrino interaction generators

● Improve neutrino energy reconstruction by 
identifying low energy protons (or pions)
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DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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Pion multiplicity tracking
● Many different pion production channels 

due to the wide-band beam

● Migrations between pion channels and 
missing pions can cause biases in the 
neutrino energy reconstruction

● ND-GAr offers excellent pion type and 
multiplicity identification:
○ Tracks from low momentum pions 

easily visible
○ Great two-track separation to count 

multiple pions
○ ECAL for identifying neutral pions
○ TPC PID to separate pions from 

protons
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DUNE ND CDR: https://doi.org/10.3390/instruments5040031
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Neutral particle detection
● ECAL provides efficient identification of photons 

and neutral pions → measure neutral pion 
production rate.

● Conversions from photons (either from 
interactions or neutral pions) can mimic an 
electron neutrino appearance event.

● Additionally the ECAL can identify neutrons 
produced from neutrino interactions.

● Currently neutron samples with ~45% efficiency 
and 40-55% purity can be selected with the 
ECAL.
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Electron / photon 
separation.

Neutron 
sample purity

DUNE ND CDR: 
https://doi.org/10.3390/instruments5040031
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Physics Beyond the Standard Model
● A variety of beyond the standard model 

signatures can be searched for, such as:
○ Neutrino tridents
○ Heavy neutral leptons
○ Light dark matter
○ Axions (and axion-like particles)
○ Anomalous tau neutrinos

● Backgrounds for these rare processes 
typically scale with mass whereas the signal 
scales with volume

● ND-GAr as a large-volume and low-density 
detector well suited for BSM searches
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From PRD 100, 115029 (2019)
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Gaseous-argon Operation of an ALICE TPC (GOAT)

● Test stand for operating an ALICE inner 
readout chamber with argon-gas mixture at 
high pressure → up to 10 atm

● Collected data with Ar-CO2 and Ar-CH4 at 
multiple pressure settings

● Gain measured using a reference pulse and 
an 55Fe source

● Analysis on-going for Ar-CO2 higher than 7 
atm and the Ar-CH4 dataset
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Ar-CO2 (90-10)
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Pictures of GOAT
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● Located at FNAL proton assembly building
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GEM Over-pressured with Reference Gases (GORG)
● Evolution of GOAT to GORG → test the 

operation of gas-electron multiplier (GEM) 
readout at high pressure

● Calibrate GEM gain at high pressure

● Demonstrate comparable gain to the ALICE 
wire-based readout chambers

● GOAT chamber in the process of being 
repurposed for GEM operation at Fermilab
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Test stand of an Overpressurized Argon Detector

● Test stand to study and operate multiple 
components for ND-GAr

● Perform a full slice test of the electronics and DAQ 
for a single ALICE outer readout chamber

● Reconstruction of tracks with entire electronics 
chain and software

● Demonstrate long-term operation of electronics and 
chamber at high pressure

● Observe kinked tracks from hadronic interactions 
on argon

● Measure proton and pion scattering on argon at 
high pressure
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Gain studies with TOAD
● Performed gain studies of an ALICE outer 

readout chamber at high pressure

● Used an Ar-CO2 (90-10) mixture up to 4 atm

● Data collected with several radioactive 
sources

● Also used to study optical readout of 
interactions in the gas

● See Deisting, Waldron et al., Instruments 
2021, 5(2), 22
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Ar-CO2 (90-10)
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TOAD in a Test Beam
● Shipped to FNAL and arrived last fall

● Planned to operate in a test beam this year

● Has been fully reassembled and is in the process 
of being recommissioned

● Will operate using an Ar-CH4 mixture up to 5 atm

● Groups involved include Imperial, Royal Holloway 
UL, FNAL, Pittsburgh, Queen Mary UL, Oxford, 
Warwick, U College London, Colorado Boulder, 
Minnesota Duluth
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● R&D underway at IGFAE and IFIC in Spain to 
characterize scintillation of argon gas mixtures and 
optimize light collection

● Performed measurements of light yield and resolution 
using an Ar-CF4 (99-1) mixture

● CF4 acts as a wavelength-shifter producing light in the 
visible band

Argon gas scintillation
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GEANT4 simulated light signals in ND-GAr
ND-GAr T0 
demonstrator
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Light collection and readout R&D
● Light currently measured with PMTs, but a 

prototype chamber with a cooled SiPM 
plane is in development

● Reduce dark count rate to achieve lower 
tracking threshold
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GAT0 First Light
● Chamber was successfully operated 

with Ar-CF4 (99-1) at 1 bar with a 
double thick-GEM structure

● S1 and S2 light signals read with 
PMTs
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Summary
● The Phase II upgrade is required to achieve the ultimate sensitivity of DUNE

● An upgraded near detector, such as ND-GAr, is a critical part of the upgrade

● ND-GAr also supports a rich physics program of neutrino interaction measurements and 
BSM searches in parallel to supporting the oscillation physics program

● Several prototyping and R&D efforts are in progress such as TOAD and GOAT/GORG at 
FNAL, GAT0 in Spain, and the calorimeter development in Germany
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This material is based upon work supported by the 
U.S. Department of Energy, Office of Science.
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BACKUP SLIDES
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DUNE Near Detector Complex
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Transverse kinematic imbalance
● Transverse kinematic imbalance (TKI) is a 

powerful probe of the underlying nuclear 
dynamics.

● ND-GAr provides an excellent environment 
to measure these events with:
○ Low momentum tracking to see all the 

outgoing hadrons
○ Excellent track separation and PID to 

identify each hadron
○ 4π angular coverage
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