Dark Sector @ PIP2-BD

Bhaskar Dutta

Texas A&M University

Physics Opportunities at Beam Dump Facility in PIP-II and Beyond

Introduction

• New Physics: Dark matter(DM), neutrino masses and mixing, baryon abundance and various anomalies, g-2 of muon, MiniBooNE etc.

Are they all correlated? Is there a model?

- Where is the new physics scale?
- Many experiments are probing new physics scales: DM direct and indirect detections, LHC, neutrino experiments, beam dump experiments, rare decays, astrophysical observations etc.
- LHC is mostly probing scales above 1 GeV

Introduction

Investigation of scales below 1 GeV

- This region is difficult to search
- Anomalies, and puzzles can be addressed
- There are many new ideas

Models (Many ongoing activities):

Light mediators: scalar/pseudo-scalar, vector; sub-GeV DM

Low energy beam dump-based experiments, Forward physics facility at the LHC, Astrophysical observations, etc. can investigate low scale models

This talk will discuss: Exploration of various models at GeV scale proton beam dump-based stopped pion experiments: High intensity beam, various production possibilities, large detectors

Proton beam-based experiments

Beam dump-based (proton beam) [ongoing]: 800 MeV-3 GeV: COHERENT (Oakridge), CCM (LANL), JSNS2(JPARC) Detectors, CsI, LAr, NaI, Ge

Fermilab SBN program: 120 GeV NUMI, 8 GeV BNB beams (ongoing)

DUNE (120 GeV)

• FASER, FASERv, SND are ongoing

How complementary are these searches?

Stopped pion experiments

800 MeV protons, 100kW, 275 nanosecond pulsed beam

LANSCE-PSR-Lujan Target: Prolific source of charged/ neutral pions and photons that produce neutrinos and potential dark sector particles.

Creating a stopped-pion source with PIP-II: PIP2-BD

- PIP-II Accumulator Ring (PAR), Compact PIP-II Accumulator Ring (C-PAR), and Rapid Cycling Synchrotron Storage Ring (RCS-SR) are three accelerator scenarios we studied ahead of Snowmass 2022
- PAR and C-PAR are realizable in the timeframe of the start of the PIP-II accelerator and DUNE Phase I
- RCS-SR is a Booster Replacement scenario under ACE on the timescale of DUNE Phase II

Facility	Beam Energy (GeV)	Repetition Rate (Hz)	Pulse Length (s)	Beam Power (MW)
PAR	0.8	100	2x10-6	0.1
C-PAR	1.2	100	2x10-8	0.09
RCS-SR	2	120	2x10 ⁻⁶	1.3

COHERENT

Proton beam hits a target Hg [COHERENT: 1 GeV]

Prompt $\pi^+ \to \mu^+ + \nu_{\mu}$: Delayed $\mu^+ \to e^+ + \overline{\nu_{\mu}} + \nu_e$

CEvNS: Coherent elastic neutrino nucleus scattering, Nuclear recoil~ O(KeV)

COHERENT: CsI data:2018

CENS-DM

The ongoing CE vNS experiments, COHERENT, CCM etc. are probing light DM

Deniverville, Pospelov, Ritz, PRD, 2015, Ge, Shoemaker, JHEP, 2018, Dutta, Kim, Liao, Park, Shin, Strigari, PRL, 2020

- Both neutrinos, DM produce nuclear recoils: how to distinguish them?
- The timing and energy recoil measurement at COHERENT, CCM, JSNS² can be used

CCM: KeV to MeV

CCM recently showed sensitivities to energies from KeV to 100 MeV

CCM, 2112.09979 (PRD)

This opens up various new possibilities:

Axion, Inelastic DM-nucleus scattering, Dark photons, Light mediators: MiniBooNe anomaly, HNL, Mirror Neutrons etc.

New particles can be produced at the target using γ , e^{\pm} , pion flux

CCM/COHERENT: $0.\pi^+$ per proton: $10^{22/23}$ POT

CCM, 2112.09979

New physics at v experiments

A': Vector $From \gamma$: ϕ =scalara=pseudo-scalar

$$\bigwedge^{\gamma} \bigwedge \bigwedge A' \qquad L \supset -\frac{\varepsilon}{4} F^{\mu\nu} F^{(\prime)}_{\mu\nu} - g_{a,\phi\gamma(Z')} \frac{(a,\phi)}{4} F^{\mu\nu} \tilde{F}^{(\prime)}_{\mu\nu}$$

Primakoff

Coherent scattering for γ exchange

Deexcitation of N^* to N: produce a, s, A'

L. Waites, A. Thompson, A. Bungau, J. Conrad, B. Dutta, W. Huang, D. Kim, M. Shaevitz, J. Spitz, arXiv:2207.13659

New physics at v experiments

- Neutral meson decays $\eta^0, \pi^0 \to \gamma A'_{\mu}$
- From Charged meson decay: quarks and lepton couplings

$$L \supset -g_{\phi(a)ff}\bar{f}(i\gamma^5)f\phi(a) - g_{A'ee}\bar{f}\gamma^{\mu}fA'_{\mu}$$

- ➢ Not helicity suppressed → both electron and muon final states contribute
- Needs to include all the internal bremsstrahlung diagrams IB_i (i=1,23)

Example 1: MeV signal - DM

We use Bigstick: Shell Model code for this calculation

$$\frac{d\sigma_{\rm el}^{DM}}{dE_r} = \frac{e^2 \epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2)(2m_N E_r + m_{A'}^2)^2} F^2(q^2) \\ \times \left[2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right]$$

For Ar40

$$\left(\frac{Inelastic}{Elastic}\right)_{signal} = 10^{-2} - 10^{-2}$$
$$\left(\frac{Inelastic}{Elastic}\right)_{bkg} = 10^{-4} - 10^{-3}$$

B. Dutta, W. Huang, J. Newstead, V. Pandey, Phys.Rev.D 106 (2022) 11, 113006

MeV signal - DM

- We use CCM background measurements and projections
- t < 200 ns, prompt window reduces the neutrino background down to O(1) events
- Rescale the shell model prediction to be consistent with the experiment, **W. Tornow et al.**, 2210.14316
- A lower threshold detector will help to improve the sensitivity in the elastic channel
 - Signal: Recoil (KeV), deexcitation photon

MeV signal – DM: Leptophobic

 $U(1)_{B}$ Model

 $m_{A'}/m_\chi \approx 2$

Can we implement inelastic scattering at SBN?

Example2: dark photon

Dark Photon

Productions involve: Charged and neutral meson decays,

protons, electron/positron flux induces bremsstrahlung and various other production processes

Example 3: ALP

 10^{-9}

 10^{-10}

PIPII-BD 800 MeV

 10^{5}

CCM200 Projections: 3 year run

 10^{6}

 $m_a \, [eV]$

PIPII-BD 2 GeV

- γ , e^{\pm} fluxes, Primakoff/Compton productions, inverse Compton/Primakoff, decays final states are used by CCM(LANL) to explore new physics
- For g_{ae}, coupling, the CCM engineering run data has started exploring new parameter space

$$L \supset -g_{a,\phi\gamma}\frac{a}{4}F^{\mu\nu}\tilde{F}_{\mu\nu}$$

CCM120 Exclusion

CCM120 Expected Sensitivity

 10^{7}

 10^{8}

Example 3.1: Absorption

Additional detection and production modes: MeV Lines from inelastic absorption, e.g., axion absorption;

Axion productions from deexcitation lines at the target

Primakoff/ Compton production Inverse Primakoff/Compton detection

 $g_{aee}, g_{a\gamma\gamma}$

Dexciation production Inelastic Absorption

 g_{ann}

CCM/PIP2: ALP

 j_i

 $\pi = \pi_i \pi_f$

1	π_{γ}	Radiation type	Label
1	-1	Electric Dipole radiation	E1
1	+1	Magnetic Dipole radiation	M1
2	-1	Magnetic Quadrupole radiation	M2
2	+1	Electric Quadrupole radiation	E2
3	-1	Electric Octapole radiation	E3
3	+1	Magnetic Octapole radiation	M3

We use these lines to produce axions, dark photon production

> $\pi = (-1)^I$ for E transitions $\pi = (-1)^{I+1}$ for M transitions multipolarity $= 2^{I}$

- These lines are also utilized at IsoDAR [60 MeV proton beam dump experiment with Be target]
- Can be utilized at PIP2 and DAMSA

CCM/PIP2: ALP

• ganngayy

deexcitation line (target)+ inverse Primakoff/Compton (detector); Primakoff/Compton (Target) +excitation (detector)

• gann

deexcitation line (target)+)
+excitation (detector)

$$\mathcal{L}_{\rm int} \supset \frac{\partial_{\mu} a}{f_a} \bar{N} \gamma^{\mu} \gamma^5 N$$
$$g_{ann} = \frac{1}{f_a}$$

Dutta, Newstead, Huang, to appear

• De-excitation line at the target is due to absorption:

$$\sigma_{\rm abs}(E_a, \Delta_2) = \frac{g_A^2 \pi}{6(2J+1)} g_{ann}^2 \delta(E_a - E_r - \Delta_2) p_a |\langle J_f || \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 || J_i \rangle|^2$$

$$18$$

Example4: Dark Sector

MiniBooNE anomaly: Dark sector

Can be probed at CCM, MicroBooNE, SBND, DUNE

Dutta, Kim, Remington, Thompson, Van de Water, PRL 129 (2022) 11, 111803

Dark Sector

MiniBooNE puzzle at CCM/PIP2

Productions via π^0 and π^+ can be investigated \rightarrow would help to discern light mediator models

Dark Sector

Outlook

- Light mediator models can explain various anomalies and puzzles
- Many model possibilities
- M(new physics) < GeV is not easy to probe, e.g., LHC, direct and indirect detection experiments mostly probe M > GeV
- Stopped pion based proton beam dump experiments have unique opportunities to probe the dark sector with MeV e, γ final states neutrino-related background is small
- New physics can be searched using pion, γ , e^{\pm} , meson fluxes, Lower mass scales can be probed efficiently
- Ongoing CCM is already providing interesting results on dark sector model parameter space
- PIP2-BD can investigate a larger range of parameter space of various models