Charge-Coupled Devices

Brenda Aurea Cervantes Vergara UNAM / Fermilab

Physics Opportunities at Beam Dump Facility in PIP-II and Beyond May 10 - 13, 2023

Charge-Coupled Devices: structure and operation

- CCDs are essentially an array of Metal-Oxide-Semiconductor capacitors (pixelated sensors)
- lonizing radiation interacting in the substrate produces e-h pairs (in Si, 1 e-h pair corresponds to \sim 3.8 eV)
- Charge is collected near the surface, transferred varying the potential wells until reaching the readout stage

춮 Fermilab

Skipper-CCDs: electron-counting sensors

- Multiple (N) measurements of same charge packet without being corrupted nor destroyed
- Averaging N off-chip, noise is reduced as $\sigma = \frac{\sigma_1}{\sqrt{N}}$
- **Count electrons in a wide dynamic range!**
- Readout time increases proportional to N (can be optimized^{*})

Standard CCD mode: charge in each pixel is measured once

New Skipper CCD: charge in each

춘 Fermilab

Skipper CCDs: low-energy interactions

춘 Fermilab

Image from skipper-CCD at surface with N=300 samples/pix

Image from skipper-CCD at surface with N=300 samples/pix

Skipper-CCDs lead the search for sub-GeV DM

• **World best limits on DM-e- interactions** with this technology because of its **low backgrounds!**

Oscura: 10-kg skipper-CCD experiment [arXiv:2202.10518] Multi-Chip Module $\qquad \qquad \qquad$ Super Module $\qquad \qquad$ LN₂ pressure vessel @ 450 psi Super Module (16 MCMs) (16 skipper-CCDs) ε ო Detector payload in 6 columnar slices (96 SMs)SN₃LAB

춘 Fermilab

Oscura: R&D results

- Partnered with new skipper-CCD foundries to ensure sensor mass-production
- **Demonstrated the success of the fabrication [NIMA 1046 (2023), 167681] [arXiv:2304.04401]**

With the Oscura prototype performance we expect no events with 4e- or more from instrumental background in 30 kg-year

Oscura: R&D results

- **Largest ever built instrument with skipper-CCDs and single-electron resolution (160 sensors!)**
- Copy of SENSEI-100 vessel with 10 prototype ceramic MCMs and the discrete readout electronics solution

~90% of the sensors working without a preselection! This is a BIG deal!*

*LSST, the largest"astronomical camera" has 189 CCDs!

Setup is being used to develop analysis software and could be used for **early science**

 10^{3}

Oscura: Early science

- **Search for millicharged particles**
coincidences of uncorrelated single pixel hits from a proton beam
- Tracking reduce our backgrounds

Number of fake tracks per day produced by random EarXiv:2304.08625]
mber of fake tracks per day produced by random
coincidences of uncorrelated single pixel hits

Oscura: Early science

- Assuming a 1 kg detector with 32 layers $\frac{100}{100}$ Current for tracking, \sim 10¹⁸ POT from the NuMI \sim 1 Hit - 3 and 4 electrons (Bkg=0) beam (120 GeV protons) and a flat $\frac{1}{2}$ Hit - 3 and 4 electrons background of 1000 evts/kg/day/keV $_{10^{-1}}$ $_{-10^{-1}}$ $_{-10^{-1}}$ 3 Hits - 1, 2, 3 and 4 electrons
- For higher $ε$ the mean free path of the mCPs is smaller than the width of the 10^{-2} tracker, increasing the probability of multiple hits

$$
\lambda \propto \frac{E_{recoil}}{\varepsilon^2}
$$

[arXiv:2304.08625]

Take-home messages

- Skipper-CCDs and their e- counting capability are promising for exploring the dark sector
- Multi-kg skipper-CCD experiments are being built; Oscura is the ultimate goal (10 kg)
- We have a ~80 g skipper-CCD detector working at FNAL with low instrumental background
- A massive skipper-CCD detector to search for mCPs from proton beams can produce very competitive limits

Thank you!

Oscura: Sensors performance

Paper coming soon!

- Sensors reach sub-electron noise and meet almost all constraints to reach desired instrumental background
- Spurious charge is under study and new approaches are being implemented
- Installed underground setup at MINOS (MOSKITA) to measure the ultimate DC

NuMI building

MINOS Hall

Oscura: Scaling up mass(MCMs/SMs fabrication)

- Fabrication of prototype Si MCMs at Argonne National Laboratory (Oscura needs ~1500 MCMs)
- Sensor gluing and microbonding is done by hand \rightarrow Plans to automatize this process
- Si MCMs production will start soon to build the first Oscura SM

Oscura: Readout electronics

Oscura requires ~24,000 readout channels complying with noise and readout time constraints

- Cold front-end electronics to reduce feedthrough complexity (only 94 cables outside vessel)
-
- 2 multiplexing stages \rightarrow 256 channels result in 1 signal
1 LTA controls 4 SM (1024 sensors) \rightarrow 24 LTAs needed in total

Oscura: Operation in LN2

Demonstrated stable operation of skipper-CCD in $LN₂$

Test of 1st SM in $LN₂$ coming soon!

• Simulations validate the convection flow

skipper-CCDs blind to $LN₂$ scintillation

Oscura: Background control

Goal: 0.01 dru \rightarrow Pathfinder experiments paving the way Decisions driven by simulations

Sources:

- Cosmogenic activation of Si and Cu
	- ³H in Si: Main bkgd (2 mdru/day at sea level)
		- \rightarrow <5 days on surface
		- Can be baked out during fab! ("total" removal at 1000°C)
- Isotopic contamination on front-end electronics, cables and components near the sensors Pressure Vessel Rate Low radioactive flex cable **[arXiv:2303.10862]**

Simulations of ²³⁸U, ²³²Th and ⁴⁰K

- \rightarrow 4cm of cable visible to CCDs (with 15 ppt)
- \rightarrow Electronics behind inner shield (width>10cm)
- **External backgrounds** Outer shield: polyethylene Inner shield: ancient lead and $\|\cdot\|$ if if $\|$ electroformed copper

Low-E background correlation with high-E events

• High-energy radiation interacting with setup results in low-E photons which can produce single-e- depositions that we are not efficiently extracting from our measurements

For Oscura, to determine the ultimate instrumental background, tests in a low-background environment are desired: MOSKITA (2in Pb shield) @ MINOS (100 m underground)

[PRD 105, 062003] [JINST 16 P06019] [PRL 125, 241803]

 $z = -2 \mu m$

 $z = 0$

Oscura: Technical requirements

Sensors

- Find new foundries for mass-production of scientific-grade skipper-CCDs
- Reduce instrumental background below 1x10⁻⁶ e-/pix/day

Front-end electronics

• Develop a low-cost, scalable, cold readout system and multiplexing

Radiation background

- Ensure use of low-background materials and cosmogenic activation control
- Oscura experiment design all driven by simulations to reach 0.01 dru

Oscura: Projected sensitivities for 30 kg-year

With the current sensors performance, we have zero background events with 4e or more (4e curve)

DM-electron scattering mediated by a heavy (left) or light (right) mediator

Oscura: Timeline and goals per period

\checkmark - Achieved

* Technically driven Oscura timeline

Skipper-CCDs: smart readout [PRL.127.241101]

FIG. 3. Measurement using ROI technique. Pixels in the words have $N = 500$ (right scale); pixels outside the words have $N = 1$ (left scale). s_f was zero in most pixels, with some pixels having $s_f = 1, 2, 3$ or very large values for the two muon tracks that are observed.

FIG. 4. (Top) Image using EOI technique. (Bottom) N for each pixel.

Output stage: standard vs skipper

Standard CCD Skipper CCD

