Charge-Coupled Devices

Brenda Aurea Cervantes Vergara UNAM / Fermilab

Physics Opportunities at Beam Dump Facility in PIP-II and Beyond May 10 - 13, 2023

Charge-Coupled Devices: structure and operation

- CCDs are essentially an array of Metal-Oxide-Semiconductor capacitors (pixelated sensors)
- Ionizing radiation interacting in the substrate produces e-h pairs (in Si, 1 e-h pair corresponds to ~3.8 eV)
- Charge is collected near the surface, transferred varying the potential wells until reaching the readout stage

‡ Fermilab

Skipper-CCDs: electron-counting sensors

- Multiple (N) measurements of same charge packet without being corrupted nor destroyed
- Averaging N off-chip, noise is reduced as $\sigma = \frac{\sigma_1}{\sqrt{N}}$
- Count electrons in a wide dynamic range!
- Readout time increases proportional to N (can be optimized*)

Standard CCD mode: charge in each pixel is measured once

New Skipper CCD: charge in each

‡ Fermilab

Skipper CCDs: low-energy interactions

‡ Fermilab

Image from skipper-CCD at surface with N=300 samples/pix

Image from skipper-CCD at surface with N=300 samples/pix

Skipper-CCDs lead the search for sub-GeV DM

World best limits on DM-e- interactions with this technology because of its low backgrounds!

Oscura: 10-kg skipper-CCD experiment [arXiv:2202.10518] LN₂ pressure vessel @ 450 psi Multi-Chip Module Super Module (16 skipper-CCDs) (16 MCMs) З Ш Detector payload in 6 columnar slices (96 SMs) SNALAB **Fermilab**

9

Oscura: R&D results

- Partnered with new skipper-CCD foundries to ensure sensor mass-production
- Demonstrated the success of the fabrication [NIMA 1046 (2023), 167681] [arXiv:2304.04401]

	No events	No events w	/ith]	
Parameter	with >1e-	3e- or mor	e	Prototype	Units
Dark current	1×10^{-6}	1.6×10^{-4}	\checkmark	3×10^{-2}	<i>e</i> ⁻ /pix/day
Readout time for full array	< 2	< 5	\checkmark	3.4 (4.2)	hours
Pixel readout rate	> 188	> 76	\checkmark	111 (89)	pix/s
Readout noise	< 0.16	< 0.20	\checkmark	0.19 (0.20)	e^- RMS
Spurious charge	< 10 ⁻¹⁰	< 10 ⁻⁸		7.2×10^{-7}	e ⁻ /pix/transfe
Trap density with $\tau > 5.3$ ms	< 0.12		\checkmark	< 0.015	traps/pix
Charge transfer inefficiency	< 10 ⁻⁵		\checkmark	$< 5 \times 10^{-5}$	1/transfer
VIS/NIR light blocking	> 90%		\checkmark	95%	
				/	

With the Oscura prototype performance we expect no events with 4e- or more from instrumental background in 30 kg-year

Oscura: R&D results

- Largest ever built instrument with skipper-CCDs and single-electron resolution (160 sensors!)
- Copy of SENSEI-100 vessel with 10 prototype ceramic MCMs and the discrete readout electronics solution

~90% of the sensors working without a preselection! This is a BIG deal!*

*LSST, the largest "astronomical camera" has 189 CCDs!

Setup is being used to develop analysis software and could be used for **early science**

- A A A A A A A A A A A A A A A A A A A
1 Not The 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Mr 1 W Ja-

Oscura: R&D results

With an array of sensors **particle tracking is possible**!

Skipper CCD technology capability to search for mCPs from proton beams using single hits

Oscura: Early science

[arXiv:2304.08625]

- Search for millicharged particles from a proton beam
- Tracking reduce our backgrounds

Number of fake tracks per day produced by random coincidences of uncorrelated single pixel hits

Threshold	doublets $(b=2)$	triplets $(b = 3)$	<i>p</i> _{bkg}
$1e^{-}$	3822	11.4	3×10^{-4}
$2e^{-}$	0.031	2.72×10^{-7}	$8.6 \times 10 - 7$
3 <i>e</i> -	$9.06 imes 10^{-5}$	$4.17 imes 10^{-11}$	$4.6 imes 10^{-8}$

Oscura: Early science

- Assuming a 1 kg detector with 32 layers for tracking, ~10¹⁸ POT from the NuMI beam (120 GeV protons) and a flat background of 1000 evts/kg/day/keV
- For higher ε the mean free path of the mCPs is smaller than the width of the tracker, increasing the probability of multiple hits

$$\lambda \propto \frac{E_{recoil}}{\varepsilon^2}$$

[arXiv:2304.08625]

Take-home messages

- Skipper-CCDs and their e- counting capability are promising for exploring the dark sector
- Multi-kg skipper-CCD experiments are being built; Oscura is the ultimate goal (10 kg)
- We have a ~80 g skipper-CCD detector working at FNAL with low instrumental background
- A massive skipper-CCD detector to search for mCPs from proton beams can produce very competitive limits

Thank you!

Oscura: Sensors performance

Paper coming soon!

	No events	No events with	h		
Parameter	with >1e-	3e- or more		Prototype	Units
Dark current	1×10^{-6}	1.6×10^{-4} v	/	3×10^{-2}	$e^{-}/\text{pix}/\text{day}$
Readout time for full array	< 2	< 5 🗸	/	3.4 (4.2)	hours
Pixel readout rate	> 188	> 76	/	111 (89)	pix/s
Readout noise	< 0.16	< 0.20	/	0.19 (0.20)	e^{-} RMS
Spurious charge	< 10 ⁻¹⁰	$< 10^{-8}$		7.2×10^{-7}	e ⁻ /pix/transfer
Trap density with $\tau > 5.3$ ms	< 0.12	~	/	< 0.015	traps/pix
Charge transfer inefficiency	< 10 ⁻⁵	v	/	$< 5 \times 10^{-5}$	1/transfer
VIS/NIR light blocking	> 90%	v	/	95%	

- Sensors reach sub-electron noise and meet almost all constraints to reach desired instrumental background
- Spurious charge is under study and new approaches are being implemented
- Installed underground setup at MINOS (MOSKITA) to measure the ultimate DC

NuMI building

Oscura: Scaling up mass (MCMs/SMs fabrication)

- Fabrication of prototype Si MCMs at Argonne National Laboratory (Oscura needs ~1500 MCMs)
- Sensor gluing and microbonding is done by hand \rightarrow Plans to automatize this process
- Si MCMs production will start soon to build the first Oscura SM

Oscura: Readout electronics

Oscura requires ~24,000 readout channels complying with noise and readout time constraints

- Cold front-end electronics to reduce feedthrough complexity (only 94 cables outside vessel)
- 2 multiplexing stages \rightarrow 256 channels result in 1 signal
- 1 LTA controls 4 SM (1024 sensors) \rightarrow 24 LTAs needed in total

Oscura: Operation in LN2

Demonstrated stable operation of skipper-CCD in LN₂

- Test of 1st SM in LN₂ coming soon!

Simulations validate the convection flow ٠

Exploring new ideas to make skipper-CCDs blind to LN₂ scintillation

Oscura: Background control

Goal: 0.01 dru \rightarrow Pathfinder experiments paving the way Decisions driven by simulations

Sources:

- Cosmogenic activation of Si and Cu
 - ³H in Si: Main bkgd (2 mdru/day at sea level)
 - \rightarrow <5 days on surface
 - Can be baked out during fab! ("total" removal at 1000°C)
- Isotopic contamination on front-end electronics, cables and components near the sensors Low radioactive flex cable [arXiv:2303.10862]

Simulations of ²³⁸U, ²³²Th and ⁴⁰K

- \rightarrow 4cm of cable visible to CCDs (with 15 ppt)
- \rightarrow Electronics behind inner shield (width>10cm) $_{\rm sc}$
- External backgrounds
 Outer shield: polyethylene
 Inner shield: ancient lead and
 electroformed copper

----- 1000°C

1.1

1.0

wafer post 1000°C bake

🛟 Fermilab

Low-E background correlation with high-E events

• High-energy radiation interacting with setup results in low-E photons which can produce single-e- depositions that we are not efficiently extracting from our measurements

For Oscura, to determine the ultimate instrumental background, tests in a low-background environment are desired: MOSKITA (2in Pb shield) @ MINOS (100 m underground)

DAMIC: Background study

[PRD 105, 062003] [JINST 16 P06019] [PRL 125, 241803]

😤 Fermilab

22 05/11/2023 Brenda Cervantes | Charge-Coupled Devices

 $z = -2 \mu m$

z = 0

Oscura: Technical requirements

system	description	goal
sensor	readout noise	0.15 e- RMS
sensor	dark current	10 ⁻⁶ e/pix/day
readout	speed	166 pix/sec
readout	channel count	24,000
detector array	total mass	10 kg
detector array	number of pixels	28 Gpix
background	rate	0.01 dru
LN2 vessel	operating pressure	450 psi
cooling	capacity	1 kW
DAQ	data handling	1 petabyte/year

Sensors

- Find new foundries for mass-production of scientific-grade skipper-CCDs
- Reduce instrumental background below 1x10⁻⁶ e-/pix/day

Front-end electronics

• Develop a low-cost, scalable, cold readout system and multiplexing

Radiation background

- Ensure use of low-background materials and cosmogenic activation control
- Oscura experiment design all driven by simulations to reach 0.01 dru

Oscura: Projected sensitivities for 30 kg-year

With the current sensors performance, we have zero background events with 4e⁻ or more (4e curve)

DM-electron scattering mediated by a heavy (left) or light (right) mediator

Oscura: Timeline and goals per period

- Achieved

* Technically driven Oscura timeline

Skipper-CCDs: smart readout

[PRL.127.241101]

FIG. 4. (Top) Image using EOI technique. (Bottom) *N* for each pixel.

Output stage: standard vs skipper

Standard CCD

