Potential Physics Topics at DAMSA

Doojin Kim (doojin.kim@tamu.edu)

Physics Opportunities at Beam Dump Facility in PIP-II and Beyond May 12th, 2023

Axions and Axion-like Particles

QCD axion for solving dynamically the strong CP problem

[Peccei, Quinn, PRL (1977); Weinberg, PRL (1978); Wilczek, PRL (1978); Kim, PRL (1979); Shifman, Vainshtein, Zakharov, NPB (1980); Dine, Fischler, Srednicki, PLB (1981); Zhitnitsky, SJNP (1980)]

Axion/Axion-like Particle Searches

Low-energy & intensity frontier

High-energy frontier

Axion/ALP searches (e.g., DAMSA)

E.g. Heavy resonance searches

Search for ALPs Interacting with Photons

 $\mathcal{L}_{\rm int} \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

Y a \propto $g_{a\gamma\gamma}$ Y

Existing Efforts in the Search for ALPs

[E.g., A review on axions/ALPs, Fortin, Guo, Harris, DK, Sinha, Sun, arXiv:2102.12503]

Basic Strategies and Challenges

ALPs in this region tends to decay rather promptly (unless significantly boosted).

Most of ALPs decay away before reaching the detector area.

Our proposed strategies

- Placing the detector system close to the source point
- Lower beam energy
- Intense beam

 \Rightarrow Neutron-induced backgrounds? vs.

featureful signal

- \Rightarrow Suppressed ν -induced backgrounds
- \Rightarrow Copious signal production

ALP Search in DAMSA at RAON

DAMSA: Dump-produced Aboriginal Matter Searches at an Accelerator

Schematic Design of the DAMSA Experiment

Photon Flux at the DAMSA Target

□ GEANT4 simulation with QGSP_BIC and 1M protons injected on a cylindrical ($d \times l = 1m \times 1m$) tungsten dump $\Rightarrow \sim 800$ photons/proton

□ Expected annual protons on dump: $\sim 1.5 \times 10^{23} \Rightarrow \sim 5.8 \times 10^{25}$ photons/year (with a 50% duty factor)

ALP: Production to Detection

ALP Production: Primakoff Process

Primakoff process,

$$\gamma(p_1) + N(p_2) \rightarrow a(k_1) + N(k_2)$$

The production cross section is enhanced

by the coherency factor Z^2 !

$$\frac{d\sigma_P^p}{d\cos\theta} = \frac{1}{4}g_{a\gamma\gamma}^2 \alpha Z^2 F^2(t) \frac{|\vec{p}_a|^4 \sin^2\theta}{t^2}$$
$$t = (p_1 - k_1)^2 = m_a^2 - 2E_\gamma (E_a - p_a \cos\theta_a)$$

Z: atomic number, α : fine structure constant *F*(*t*): form factor $|\vec{p}_{\alpha}|$: magnitude of the outgoing three-momentum of the ALP at the angle θ relative to the incident photon momentum E_{γ} : incident photon energy

Transportation of ALP

ALP should neither interact in the target nor decay before reaching the detector.

ALP Detection: ALP Decay

ALP decays in flight to a couple of photons which are detected by the DAMSA detector.

$$a \quad \dots \quad \bigotimes \left(\begin{array}{c} \gamma \\ g_{a\gamma\gamma} \\ \gamma \end{array} \right) = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi}$$

E.g., with $E_a = 0.3$ GeV, $m_a = 0.1$ GeV and $g_{a\gamma\gamma} = 10^{-5}$ GeV⁻¹, the mean decay length is 1.1 meters.

Calculating Signal Detection Rate

$$S = \int dE_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} \cdot \frac{\sigma_p^p}{\sigma_{SM} + \sigma_p^p} \cdot P_{surv}^{\gamma} \cdot P_{decay}^{\gamma}$$

$$ALP \text{ flux at the detector location}$$

$$Probability \text{ of decay inside}$$
the detector volume
$$P_{decay}^{\gamma} = 1 - \exp\left(-\frac{\Delta\ell}{p_a \tau_a^{\gamma}}\right)$$

$$(\ell_a = \text{dump-detector distance})$$

Background Considerations

Neutrino-originating

Beam energy: 600 MeV

- Suppressed production of charged pions
- Neutrinos from stopped pions and muons, resulting in an isotropic, i.e., dispersed, neutrino flux

\Rightarrow Negligible

Neutron-originating

Any two photon tracks

- Accidentally crossing each other at a point in the decay chamber within detector position and timing resolutions, and
- Vector sum of their momenta traced back to the dump
- Invariant mass consistent with m_a of interest
- \Rightarrow Reducible by more than 8-9 orders of magnitude

(See Wooyoung and Jacob's talks)

Expected ALP Sensitivity Reach at DAMSA

- Beam energy: 600 MeV
- POTs: 1.5×10^{23} per year with a 50% duty factor
- # of BGs: 10⁸ per year (see Wooyoung & Jacob's talks)
 - DUNE sensitivity curves from [Brdar, Dutta, Jang, **DK**, Shoemaker, Tabrizi, Thompson, Yu, PRL126, 201801]

DAMSA can probe the ALP parameter region that has never been explored.

Expected ALP Sensitivity Reach with the PIP-II Beam

Conclusions

- The proton beam (at PIP-II) will **copiously produce photons** in the dump.
- An axion-like particle search was illustrated as an example physics case.
- Neutrino-origin backgrounds are negligible due to the low-energy beam, whereas enormous neutron-origin backgrounds can be suppressed significantly with the aid of a high-capability detector. (see also Wooyoung and Jacob's talks.)
- DAMSA can be sensitive to large-mass and large-coupling regions of ALP parameter space due to its close proximity to the dump.
- DAMSA at PIP-II can provide opportunities for exploring other physics cases.

Back-up

Other Planned Experiments

Doojin Kim, Texas A&M University

PIP-II Workshop