Ongoing FCC activities

- List of titles for internal FCC notes on detectors that was suggested to serve as reference for the forthcoming FCC mid-term report (first draft due by mid-June)
 - IDEA dual-readout calorimetry
 - Beam test results with dual-readout calorimeter prototypes
 - Dual-readout calorimetry performance on single particles and jets
 - Performance of the IDEA dual-readout calorimetry in the identification and reconstruction of complex final states with DNN

Volunteering as editor?

- Exploiting timing measurements for the 3D reconstruction of hadronic showers with the IDEA dual-readout fibre calorimeter
- Preliminary estimate of the IDEA dual-readout calorimetry costing
- Mogens Dam and Felix Sefkow charged of collecting cost estimates for the various sub-detector proposals for FCC (Franco Bedeschi contact person for IDEA)

Note on *"Preliminary estimate of the IDEA dual-readout calorimetry costing"*

- Minimize efforts by collecting all information directly in the FCC cost estimate note:
 - Link to overleaf
 - Use as basis the cost estimate from the Calvision proposal
 - Let me know if there is any update you would like to include
- Proposed outline/approach:
 - Brief description of detector design
 - Breakout of cost drivers
 - Crystals, SiPMs, filters, electronics, cooling, mechanics
 - Discussion of cost-performance optimization possibilities
 - Keep the total cost below 100M\$ and show how the fiber calo cost could be reduced in case of a crystal EM section (coarser readout granularity, larger brass tubes, shorter fibers)

Additional material

Cost estimate uncertainty level

		Primary Characteristics	Secondary Characteristic	
Cost Estimate Classification	Level of Definition (%			Expected accuracy range
Cost Estimate Classification	of Complete		and the second second second	- Variation in Iow and high
	Definition)	Typical Estimating Technique of the Cost	Typical purpose of estimate	ranges
	OF to OF	Capacity factored, Stochastic, most Parametric models, judgement	Concept corporing	L: -20% to -50%
Class 5, Concept Screening	0% TO 2%	or analogy	Concept screening	H: +30% 10 +100%
				L: -15% to -30%
Class 4, Study or Feasibility	1% to 15%	Equipment factored, more Parametric models	Study or feasibility	H: +20% to +50%
		semi-detailed unit costs with assembly level line items, cost		
		estimating technique includes the combinations of various		1: 10% to 20%
Class 3 Preliminary Budget Authorization	10% to 40%	analoay: expert opinion: trend analysis)	Budget authorization or control	H: +10% to +30%
class 5, Heiminary, bodger Aumonzation	10/010 40/0	analogy, experi opinion, nena analysisj	bouger demonzation of control	
		Detailed unit cost, cost estimating technique includes the		
		combinations of various techniques (detailed, unit-cost, or activity-		L: -5% to -15%
Class 2, Control or Bid/Tender	30% to 70%	based; expert opinion; learning curve)	Control or bld/tender	H: +5% to +20%
				L: -3% to -10%
Class 1, Check Estimate or Bid/Tender	50% to 100%	Deterministic, most definitive cost estimation	Check estimate or bid/tender	H: +3% to +15%

The target for the mid-term Feasibility Study is Class 4.

Baseline IDEA radial envelopes

- Silicon pixel vertex detector (MAPS):
 - R = 1.7 34 cm
- Drift chamber:
 - R = 35 200 cm
- Si wrapper (micro-strip layer)
 - R = 200 210 cm
- Thin Solenoid (2T, 0.7X0)
 - R = 210 240 cm
- Pre-shower (µRwell behind absorber)
 - R = 240 250 cm
- Dual readout calorimeter
 - R = 250 450 cm
- Muon chambers (µRwell)
 - R = 450 560 cm

EM crystal calo radial envelopes: baseline?

Overview

It's a global cost-performance optimization of the full detector

Option	DC outer radius [cm]	Crystal inner radius [cm]	Solenoid inner radius [cm]	Fiber calo inner radius [cm]	Approx crystal volume* [m³]
No crystals	200	-	210	250	-
Previous sim	175	185	220	250	14.0
New baseline	190	200	230	260	17.2

Note: crystal calo is about $1\lambda_1$ so we could reduce the length of the fiber calo * Crystal calo cost is 80% driven by crystal volume, volume ~ $R^{1.65}$