Minerva-2x2 simulation overview

Noë Roy on behalf of the Reco & Sim Minerva 2x2 team 2x2 Workshop – 05/19/2023

This talk is about the use of MINERvA software for 2x2 simulation.

- All the energy deposits are handled by Edepsim
- We want to use MINERvA framework to readout edepsim hits & reconstruct what's inside MINERvA modules
- Main challenges:
 - MINERvA is not designed to take inputs from the Edepsim framework: different packages, root versions, compiler versions, framework architecture...
 - MINERvA has its own G4 framework
 - 2x2 Geometry is different from the original MINERvA one

Minerva simulation

Geometry included inside

Gdml geometry for Minervax2

Good geometry is now implemented inside MINERvA simulations with the right number of modules and the right distance between the **upstream** and **downstream** part

-> Running with fake plex and default calibration

4

Edepsim to Minerva

- -> All hits positions are shifted in Z and Y position
- -> All hits timing are shifted with a reset at 0 at each spill for MINERvA software, the spill rate is handled by MINERvA

Per spill timing

Time distribution of the enegy deposits in the spill

Before running the Readout simulation, we merge all the events of a spill (keep track of IDs for afterwards matching)

X,Z distribution of the energy deposits

Readout sim & reco in a nutshell

Hits (energy deposits) -> Readout simulation (with default calibration for now): pE channels -> Reconstructed objects.

Reconstructed low level objects : Tracks and Blobs

Output from MINERvA simulation

-> We store each clusters Strip, Module, Plane position, energy, timing, associated true MC deposits

-> We store each reconstructed Tracks & Blob with position, direction, energy, time, de/dx, each object associated to true MC deposits that contributed

MINIRUN3 simulation lay here: /pnfs/dune/tape_backed/users/mkramer/prod/MiniRun3/MiniRun3_1E19_RHC/

What we have now for our grid jobs 1 script that:

- loads edepsim on the grid
- run Edepsim_to_flat module
- runs MINERvA simulation & Reco software on the output of the module in local node grid directory
- Transfers Flat file and MINERvA output back to the DUNE PNFS directory

Files are read on pnfs via xrootd with root6.

- Run on ~1% of the sample (more to come obviously)
- ~20s per file From Edepsim to Flat
- Filesize /21 approximatively (only Hits that are in sensitive material)
- Readout+Reco: ~5min per file (~185 spills)
- Global time for a file is then ~5/6 min (and we have ~1k files). Things now properly run on the grid so not an
 issue right now
- Filesize ~/20 compared too original Edepsim file
- Run on the MINIRUN3 sample, issues with timing/spill merging found and fixed from our side

- We have a MINERvA simulation that can readout the Edepsim simulation
 - Proper realistic MINERvA geometry
 - Still running on « fake plex » to have the right number and position of modules
 - Still running on Fake calibration for now
- 1 script that handles all the simulation parts (Edep->Flat root + Minerva) that can be run on the fermigrid with large scale simulation
- Now need to look at the track reconstruction efficiency and the truth matching between edepsim and MINERvA sim with larger dataset
- Still need validation sets of plots
- Currently running on default plex with defaults (de)calibration effects applied. Fine by now but will need to be updated

