

New Perspective, June 26, 2023

ANNIE in 10 minutes

Marvin V. Ascencio-Sosa On behalf of the ANNIE collaboration

Accelerator neutrino neutron interaction experiment

An international collaboration:

Goals:

IOWA STATE

NIVERSITY

- Technology: **R&D** perform for the new neutrino detection technologies: - Fast Photosensors (LAPPDs)

ANNIE in 10 minutes - New Perspective

Physics: ANNIE aims for a unique final-state neutron yield measurement from neutrino-

- New detection media (Gd-loaded water and Water-based Liquid Scintillator WbLS)

Accelerator neutrino neutron interaction experiment

ANNIE is placed on-axis in the BNB beamline at Fermilab.

IOWA STATE UNIVERSITY

Neutrino energy average less than 1 GeV.

ANNIE in 10 minutes - New Perspective

Neutrino **Oscillations** physics:

- $N(E_{\text{reco}}) \sim \phi(E) \times P(E) \times \sigma(E) \times f_{\sigma}(E, E_{\text{reco}})$
- δ CP oscillation parameter requires $\nu/\bar{\nu}$ events comparison. The number of final state neutrons impacts the hadronic recoil energy.

ANNIE in 10 minutes - New Perspective

Physics Motivation

WA STATE

The first application of Gd-loaded water on a neutrino beam

ANNIE in 10 minutes - New Perspective

- Gadolinium's average neutron capture cross-section is high compared with pure water. Cross-section:
 - * Gd: 49000 barns.
 - * H: 0.3 barns.
- Neutrons after thermalization, capture time: * Gd: 20 μs. * H: 200 μs.

Signature:

- * Gd: ~ 8 MeV γ cascade.
- * H: ~ 2.2 MeV γ cascade.

IOWA STATE

Technological motivation Large Area Picosecond Photo Detector (LAPPD)

Nuclear Inst. and Methods in Physics Research, A 936 (2019) 527-531

- coated capillary pores.
- differential timing information.
- timing (< 100 psec).

ANNIE in 10 minutes - New Perspective

64 psec sigma LAPPDs are 20 x 20 cm tiles based on microchannel **500** <u>⊔</u>q ₄₀₀⊢ plates (MCPs) detectors. Each MCP is a borosilicate glass structure with millions of 20-micron-diameter ່ 300⊟ ලි 200 100 The LAPPD contains 28 anode strip lines with 65000 64500 65500 66000 66500 double-sided readout mechanics, which enables time (psec) AnnieTile39_2019-09-30T4 a reconstruction of the photon hit on the hist. λ=420nm top -100 -50 Excellent position resolution (sub-cm scale) and cumul. 0 50 incoming photon 0.30 QE Photon \rightarrow Electron 100 DB door 100 50 -50 -100 0 $\Delta V \sim 100 \text{ V}$ QE[\%]: [5.8, 25.4]; avg: 23.7, o[1]: 1.311e-02 🥄 $\Delta V \sim$ 875 V $\Delta V \sim$ 200 V $\Delta V \sim 875 \text{ V}$ $\Delta V \sim$ 200 V Electron $\rightarrow 10^7$ Electrons $\Delta t \rightarrow Position$ **Centroid of** adjacent strips

600f

Technological motivation Water-based Liquid Scintillator (WbLS)

Cherenkov signals.

1) Enhanced neutrino energy reconstruction. 2) Enhanced neutron signals.

Studying possible Gd-loading.

ANNIE in 10 minutes - New Perspective

WbLS for ANNIE produced at BNL (M. Yeh).

ANNIE in 10 minutes - New Perspective

ANNIE Detector

ANNIE detector components

- Vertex reconstruction with LAPPDs and kinematics in MRD.
- 2. Neutrons travel, scatter, and thermalize.
- by standard PMTs.

ANNIE in 10 minutes - New Perspective

ANNIE

1. The neutrino interacts via CC in the fiducial volume producing charged lepton.

3 and 4. Thermalized neutrons are captured on the Gd producing flashes of light

IOWA STATE

Current ANNIE status

- ANNIE (27-ton Gd-H2O) has a water system to clean the Gd-water.

ANNIE in 10 minutes - New Perspective

UV-vis measurements are performed regularly to monitor the Gd concentration, With the LED system installed in the tank, we monitor the water transparency.

Current ANNIE status

Characterization and Integration Testing

Self-Trigger with Beamgate (X=40, Y=15) [Event 7]

- ANNIE aims to deploy 5 LAPPDs.
- We deployed 1 last year and 2 this year. So, we have 3 working LAPPDs in Gd-Water.
- Data acquisition with multiple LAPPDs

ANNIE in 10 minutes - New Perspective

Analog pickup card

Credit: Michael Nieslony

ACDC: PSEC chips capture signals from both sides of each stripline and it has 10 GS/s, 25 ns buffer.

LAPPD triggers asynchronously within a 20 us (adjustable) beam window.

Current ANNIE status

WbLS

The Scintillator for ANNIE Neutrino Detection Improvement (SANDI) is an acrylic vessel of ~ 365 kg of WbLS.

- SANDI with WbLS was <u>deployed</u>.
- We collected data from March to May 2023.
- The first analysis is ongoing.

ANNIE in 10 minutes - New Perspective

Thank you!

Backup slides

Backup slides

First application of Gd-loaded water on a neutrino beam

ANNIE in 10 minutes - New Perspective

- Gadolinium's average neutron capture cross-section is high compared with
 - pure water. Cross-section:
 - * Gd: 49000 barns.
 - * H: 0.33 barns.
- Neutrons after thermalization, capture time:
 - * Gd: 20 μs.
 - * H: 200 μs.

Signature:

- * Gd: ~ 8 MeV γ cascade.
- * H: ~ 2.2 MeV γ cascade.

Backup slides

IOWA STATE NIVERSITY

Liquid Argon **proton** multiplicity

Study the multiplicity of final state neutrons from neutrino-nucleus interactions in water.

ANNIE in 10 minutes - New Perspective

Backup slides

DSNB search

ANNIE in 10 minutes - New Perspective

Neutron multiplicity helps to understand and reduce atmospheric neutrino backgrounds to Proton Decay and Diffuse Supernova Neutrino measurements.

Backup slides

Phase I results:

Beam-correlated neutron candidate event rates measured during ANNIE Phase-I.

Conventional scintillator

*The charged particle excites the benzene ring via ionization. *The ring is then de-excited by emitting a photon, which then is absorbed by a wave-shifting fluor.

*Organic liquids are almost always not miscible in water.

WbLS

surfactants -> chain molecule -> (hydrophillic and hydrophobic c. end)

IOWA STATE 'ERSITY

Backup slides

AmBe source

ANNIE Preliminary

courtesy of Leon Pickard

ANNIE in 10 minutes - New Perspective

Calibration:

We have to know the position-dependent neutron capture efficiency.