Techpub number: FERMILAB-SLIDES-23-099-V

Istituto Nazionale di Fisica Nucleare

The Muon g-2 Experiment - in 10 minutes -

New Perspectives 2023 27 June 2023

Paolo Girotti (INFN Pisa)

on behalf of the g-2 collaboration

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- g is a dimensionless factor which <u>encodes all</u> the possible virtual interactions between the fermion and the magnetic field
 - At tree level is $\mathbf{g} = \mathbf{2}$

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- g is a dimensionless factor which <u>encodes all</u> the possible virtual interactions between the fermion and the magnetic field
 - At tree level is $\mathbf{g} = \mathbf{2}$
 - After counting for the virtual contributions from the entire
 Standard Model it becomes g = 2.002331...

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- g is a dimensionless factor which <u>encodes all</u> the possible virtual interactions between the fermion and the magnetic field
 - At tree level is $\mathbf{g} = \mathbf{2}$
 - After counting for the virtual contributions from the entire
 Standard Model it becomes g = 2.00233183...

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- g is a dimensionless factor which <u>encodes all</u> the possible virtual interactions between the fermion and the magnetic field
 - At tree level is $\mathbf{g} = \mathbf{2}$
 - After counting for the virtual contributions from the entire Standard Model it becomes g = 2.00233183620(86)

- Any **discrepancy** between experimental measurement and theoretical prediction could be a hint of **new physics**
- Leptons are the only elementary fermions that we can easily produce and store
 • 105.67 MeV/c² (=1.7768 GeV/c²)

- Any discrepancy between experimental measurement and theoretical prediction could be a hint of new physics
- Leptons are the only elementary fermions that we can easily produce and store

• The electron g-2 is already measured and calculated with extremely high precision $\rightarrow g_e = 2.00231930436146(56)$

- Any discrepancy between experimental measurement and theoretical prediction could be a hint of new physics
- Leptons are the only elementary fermions that we can easily produce and store

- The electron g-2 is already measured and calculated with extremely high precision $\rightarrow g_e = 2.00231930436146(56)$
- The muon is 200 times more massive → 40'000 times more sensitive to new massive particles

- Any **discrepancy** between experimental measurement and theoretical prediction could be a hint of **new physics**
- Leptons are the only elementary fermions that we can easily produce and store

- The electron g-2 is already measured and calculated with extremely high precision $\rightarrow g_e = 2.00231930436146(56)$
- The muon is 200 times more massive → 40'000 times more sensitive to new massive particles
- The tau would be even better, but it's impractical

- Any **discrepancy** between experimental measurement and theoretical prediction could be a hint of **new physics**
- Leptons are the only elementary fermions that we can easily produce and store ≈0.511 MeV/c² ≈105.67 MeV/c² ≈1.7768 GeV/c² е μ 1/2 1/2electron muon tau The electrg ed with extremely 6(56) The muon is our golden ticket to explore the unknown... The muon les more sensitive t Just measure it very precisely! The tau would be ev μ BSM P. Girotti | g-2 in 10 minutes

Is there a hint?

Before 2021

- BNL E821 Experiment (2006) and Standard Model theory (2020) were different by 3.7σ
- Fermilab E989 Experiment goal: improve the experimental precision by a factor of 4 to <u>140 ppb</u>

Is there a hint?

Before 2021

- BNL E821 Experiment (2006) and Standard Model theory (2020) were different by 3.7σ
- Fermilab E989 Experiment goal: improve the experimental precision by a factor of 4 to <u>140 ppb</u>

- Fermilab Run-1 result published in 2021 with <u>460 ppb</u> precision → Discrepancy increased to **4.2σ** !
- New precise Lattice-QCD calculations of the hadronic contribution to a_µ in tension with the data-driven SM prediction → <u>a new g-2 puzzle</u> !

06/27/23

P. Girotti | g-2 in 10 minutes

How to measure g-2

• In a magnetic storage ring, the muon spin precesses slightly faster than the cyclotron frequency

$$\underline{\vec{\omega}_s} = -\frac{ge\vec{B}}{2m} - (1-\gamma)\frac{e\vec{B}}{m\gamma} \qquad \underline{\vec{\omega}_c} = -\frac{e\vec{B}}{m\gamma}$$

• If we do the difference we get...

How to measure g-2

 In a magnetic storage ring, the muon spin precesses slightly faster than the cyclotron frequency

$$\underline{\vec{\omega_s}} = -\frac{g e \vec{B}}{2m} - (1 - \gamma) \frac{e \vec{B}}{m \gamma} \qquad \underline{\vec{\omega_c}} = -\frac{e \vec{B}}{m \gamma}$$

If we do the difference we get...

$$\vec{\omega}_a = \underline{\vec{\omega}_s} - \underline{\vec{\omega}_c} = -\left(\frac{g-2}{2}\right)\frac{e\vec{B}}{m} \equiv -a_{\mu}\frac{e\vec{B}}{m}$$

- The "anomalous" precession frequency of the muon is proportional to the g-2 and to the magnetic field strength
- Virtual particles make this happen!
- Measure $\boldsymbol{\omega}_{a}$ and $\mathbf{B} \rightarrow \text{obtain } \mathbf{a}_{\mu}$

06/27/23

 $a_{\mu}\equiv rac{g-2}{2}$

Let's build a g-2 experiment

- Produce muons artificially
- Very pure and polarized beam
- Luminosity as high as possible

Let's build a g-2 experiment

- Produce muons artificially
- Very pure and polarized beam
- Luminosity as high as possible
- Inject beam into a continuous magnet
- Store the muons until they all decay
- Keep the beam focused and centered

Let's build a g-2 experiment

- Produce muons artificially
- Very pure and polarized beam
- Luminosity as high as possible
- Inject beam into a continuous magnet
- Store the muons until they all decay
- Keep the beam focused and centered
- Detect all the decay positrons
- Measure the magnetic field
- Measure the beam distribution

Polarized muons

Istituto Nazionale di Fisica Nucleare

$p \to \pi^+ \to \mu^+$

- 16 bunches of 10¹² protons boosted @8 GeV to recycler ring and sent toward a fixed target
- Positive pions are extracted from the interaction with target
- Four turns in the delivery ring to separate remaining protons and let pions fully decay into muons
- High energy muons are naturally polarized

• Muons enter the g-2 ring igcolog

How to

How to

Inflector magnet

Inflector magnet

Tracker modules

06/27/23

Ph

P. Girotti | g-2 in 10 minutes

P. Girotti | g-2 in 10 minutes

How to measure ω_a

Muon decays in a positron and 2 neutrinos

Parity violation \rightarrow positrons in CM preferably in the <u>direction of the muon spin</u>

26 MeV

muon spin

e ∖53 MeV Momentum Spin

Spin precession → the energy spectrum in the lab frame **oscillates** through time

How to measure ω_a

06/27/23

P. Girotti | g-2 in 10 minutes

g-2 frequency!

10

Final formula

102

 Constants known from
 other experiments with high precision (25 ppb)

Three measurements:

- ω_a: Muon anomalous precession frequency
- ω_p: Larmor precession
 frequency of protons (B field)
- p_r: Muon distribution in the storage ring

60

80

Time after injection modulo 102.5 [us]

100

06/27/23

P. Girotti | g-2 in 10 minutes

Painstaking detail

Many analysis teams performing the same measurements independently

-164

44

46

45

80

- Many cross-checks and validation routines
- Every systematic effect to be studied at **ppb** level

Run-1 uncertainty table

→ that's 0.000001% !

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_a (statistical)	-	434
ω_a (systematic)	-	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib} \langle \omega'_p(x, y, \phi) \cdot M(x, y, \phi) \rangle$	-	56
B_q	-17	92
B_k	-27	37
μ_p'/μ_e	-	10
m_μ/m_e	-	22
g_e	-	0
Total systematic	-	157
Total external factors	-	25
Total	544	462

06/27/23

P. Girotti | g-2 in 10 minutes

A lot of data

- More than **7 PB** of raw data have been accumulated in 6 years of data taking
- All the detected ~10¹¹ positrons are reconstructed and <u>carefully calibrated</u> in time and energy
- $\sim 3x10^7$ cpu-hours of Grid production every year + simulation

Takeaways

- The Muon g-2 is a fashinating topic that touches a large portion of modern physics
- Impossible to cover all aspects of g-2 in 10 minutes
 → I hope I sparked a bit of curiosity
- Possible hints of new physics could come via extreme precision measurements
- New tensions are arising on the theory side too
- New publication at ~220 ppb coming as soon as analysis review is complete. Stay tuned!

