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Axion Dark Matter

• Pseudoscalar introduced to 
explain why the Strong force 
is CP conserving

• Much lighter than wimps: 
~µeV

• Acts like a classical wave!

• Looking for dark matter is 
like tuning a radio to find the 
right station (axion mass)

• Lots of new experiment 
ideas! Artwork by Sandbox Studio in Symmetry Magazine
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Axion-Electrodynamics

• Axions and ALPs interact with photons through an 
anomaly term

• This coupling is tiny, but still important

• The upshot is that in an external B-field the axion 
sources an E-field
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Medium Effects

• Putting in a plasma as a medium

• Resonance when the axion and plasma frequencies 
match  

• Limited by the loss rate of the medium
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Wire metamaterials

• One of the first metamaterials

• Plasma frequency determined by 
two factors: effective electron 
number density and mass

• Wires mutually induct, changing 
the plasma frequency 

• cm spacing gives ~GHz plasma 
frequency
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Discovery Potential
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How else can you make massive 
photons?

• Plasmons are not the only way to have resonances in the 
dielectric constant

• Need quasi-particles that can mix with the photon to 
create new modes

• Inherit a coupling to the axion from the photon
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Phonon-Polaritons

• Optical phonons can mix with photons to form 
polaritons

• Originally proposed in arXiv:2005.10256, using a 
different formalism and relying on difficult calorimetry

• Easier to think just in terms of the dielectric constant 
(the axion doesn’t care about the electrons)
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Detecting Phonon-Polaritons

• Changes in dialectic 
constant create 
propagating photons 

• Near-zero epsilon 
makes vacuum 
reflective

• Mini-cavity/dish 
antenna! 
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Expected Exclusion
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Axion-Quasiparticles
• In principle materials with axion-like quasiparticles exist 

• Like “regular” axions they mix with a photon in a B-field, but much more 
strongly

• Idea in arXiv:1807.08810, theory in arXiv:2102.05366 

• Similarly to phonons this can be thought of as an effective refractive index

• Now it depends on the applied magnetic field 
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Expected Exclusion
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Conclusions

• Playing around with the 
photon gives many 
interesting new avenues for 
detection

• Plasmas so far are the most 
promising, with significant 
work being done in ALPHA

• Interested in high quality 
tunable resonances!
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ALPHA

• Experimental consortium coming together to build a plasma haloscope

• Contributions from Stockholm University, UC Berkeley, MIT, ITMO, 
Cambridge, Yale, the University of Maryland and UC Davis
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Discovery Potential
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