Estimation of Combinatoric Background in SeaQuest using an Event-Mixing Method

Abinash Pun
(For SeaQuest Collaboration)

New Perspectives 2023, Fermilab
June 26-27
FERMILAB-SLIDES-23-130-PPD

带Fermilab

Office of Science

J / ψ : History

- Bound state of $c \bar{c}$ pair, discovered in 1974 A.D
- Richter et al. at SLAC (SPEAR) Ting et al. at BNL (AGS)
- Vector meson with spin 1 and invariant mass $=3.0969 \mathrm{GeV} / \mathrm{c}^{2}$
- Decays into $\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$or $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$with a large branching ratio ($\approx 6 \%$ each)
- The discovery got Nobel prize in 1976

Pair particles production from $\mathrm{e}^{+} \mathrm{e}^{-}$collisions at SPEAR [left] and Electron-positron invariant mass distribution from 20 $\mathrm{GeV} / \mathrm{c}$ protons on fixed target at AGS[Right].

Motivation

- J/ $\boldsymbol{\psi}$ Spin Alignment

- The distribution of decay particles ($\mu^{+} \mu^{-}$) influenced by J / ψ spin alignment =>insight into different production mechanisms

$$
\frac{d N}{d \cos \theta d \phi} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi
$$

- Issue: In addition to desired dimuon signal the recorded data also contains random combinations of single muons from uncorrelated processes.
- Mixing method: Estimate the combinatorial background with proper normalization

SeaQuest(E906) Experiment

- 120 GeV proton Beam
- Spectrometer
C.A. Aidala et al., Nu. Ins., Vol. 930, 49 (2019)
- Four tracking stations (Drift chambers, proportional tubes)
- Trigger hodoscopes
- Focusing (beam dump) and Analyzing Magnets

Mixing Method

- Positive tracks from one event is combined with negative tracks from another event
- Requirements:
- The tacks must be mixed from events that are "similar" (track multiplicity) to each other
- Signal-rate in even stream should be small
- For E906-Data
- The events are sorted by drift chamber occupancy before mixing
- N.B.: All cuts and conditions should be identical for the mixing events and real events

Mixing Method: Mathematical Argument

- $N_{E}=$ No. of events events in a run.
- Each event i has zero or more reconstructed tracks, which are broken up into four groups.

1. $s_{i}^{+}=$no. of + ve tracks from a signal $(J / \psi$ or DY$)=0$ or 1
2. $s_{i}^{-}=$no. of - ve tracks from a signal $(J / \psi$ or DY$)=0$ or 1
3. $b_{i}^{+}=$no. of + ve tracks from backgrounds $=0,1,2, \ldots$
4. $b_{i}^{-}=$no. of - ve tracks from backgrounds $=0,1,2, \ldots$

- The signal tracks (positive and negative) come from a correlated source; these only appear in pairs in the same event.
- The background tracks come from uncorrelated sources.
- N.B. If only one of a pair of tracks from a signal is reconstructed, then it falls into the background category.

Mixing Method: Mathematical Argument

- Total number of unlike-sign track pairs within an event

$$
N_{P}=\sum_{i=1}^{N_{E}}\left(s_{i}^{+} s_{i}^{-}+s_{i}^{+} b_{i}^{-}+b_{i}^{+} s_{i}^{-}+b_{i}^{+} b_{i}^{-}\right)
$$

$$
N_{S}=\sum_{i=1}^{N_{E}} s_{i}^{+} s_{i}^{-}
$$

- Combining Tracks from adjacent events

$$
N_{P}^{\prime}=\sum_{i=1}^{N_{E}}\left(s_{i}^{+} s_{i+1}^{-}+s_{i}^{+} b_{i+1}^{-}+b_{i}^{+} s_{i+1}^{-}+b_{i}^{+} b_{i+1}^{-}\right)
$$

Mixing Method: Mathematical Argument

- Total number of unlike-sign track pairs within an event

$$
N_{P}=\sum_{i=1}^{N_{E}}\left(s_{i}^{+} s_{i}^{-}+s_{i}^{+} b_{i}^{-}+b_{i}^{+} s_{i}^{-}+b_{i}^{+} b_{i}^{-}\right)
$$

$$
N_{S}=\sum_{i=1}^{N_{E}} s_{i}^{+} s_{i}^{-}
$$

- Combining Tracks from adjacent events
equal within uncertainties

$$
N_{P}^{\prime}=\sum_{i=1}^{N_{E}}\left(s_{i}^{+} s_{i+1}^{-}+s_{i}^{+} b_{i+1}^{-}+b_{i}^{+} s_{i+1}^{-}+b_{i}^{+} b_{i+1}^{-}\right)
$$

- Negligible if the signal rate is small enough. Can be estimated from MonteCarlo embedding method.

$$
N_{p}-N_{p}^{\prime} \approx N_{s}
$$

Mixing Method: GMC Embedding Check

- Started with uncorrelated Data (already mixed) in the left
- The 6 GeV Dimuons are embedded randomly in the event stream at the rate of 2%

Mixing Method: GMC Embedding Check

- The dimuon distribution after embedding GMC is shown in black histogram
- The green histogram shows the dimuon spectrum after the mixing method applied to the GMC embedded data
- GMC embedded data, GMC embedded mixed data went through identical procedure and cut

Mixing Method: GMC Embedding Check

Embedded GMC - Recovered Signal

- The signal recovered from mixing method is almost same as signal embedded
- Embedded GMC signal - Recovered Signal $=\mathbf{3 2 . 0 0} \pm \mathbf{1 4 9 . 4 5}$

Summary

- An event mixing method is developed to estimate the combinatorial background with correct normalization
- The method was tested with embedding 6 GeV GMC signal into the uncorrelated data.
- The embedded signal was recovered successfully
- Paper related to the study has been submitted to JINST; https://arxiv.org/abs/2302.04152
- Acknowledgement
- This work is funded by DOE Office of Science, Medium-Energy Nuclear Physics Program

The Combinatoric Background Sum - Normal Run

$$
N_{C}=\sum_{i=1}^{N_{E}}\left(s_{i}^{+} b_{i}^{-}+b_{i}^{+} s_{i}^{-}+b_{i}^{+} b_{i}^{-}\right)
$$

Let's sort the events in order of occupancy, ω, from low to high. Then the sum can be broken into sub-sums where all events have the same occupancy. The number of events at a given occupancy is N_{ω}.

$$
N_{C}=\sum_{\omega=0}^{\omega_{\max }} \sum_{i=1}^{N_{\omega}}\left(s_{i}^{+} b_{i}^{-}+b_{i}^{+} s_{i}^{-}+b_{i}^{+} b_{i}^{-}\right)
$$

The numbers s_{i}^{+}, etc., are all small integers (see DocDB 10059) drawn from a distribution. But N_{ω} will tend to be large, certainly a few hundred within a run. The sum over events with the same occupancy will sample all possible values of $s_{i}^{+} b_{i}^{-}$(e.q.) at that occupancy several times. We can replace the sum with averages.

The Combinatoric Background Sum - Normal Run

$$
\begin{aligned}
& N_{C}=\sum_{\omega=0}^{\omega_{\max }} \sum_{i=1}^{N_{\omega}}\left(s_{i}^{+} b_{i}^{-}+b_{i}^{+} s_{i}^{-}+b_{i}^{+} b_{i}^{-}\right) \\
= & \sum_{\omega=0}^{\omega_{\max }} N_{\omega}\left[\left\langle s^{+} b^{-}\right\rangle_{\omega}+\left\langle b^{+} s^{-}\right\rangle_{\omega}+\left\langle b^{+} b^{-}\right\rangle_{\omega}\right]
\end{aligned}
$$

where $\left\langle s^{+} b^{-}\right\rangle_{\omega}$ is the average value of the product $s_{i}^{+} b_{i}^{-}$at the given occupancy ω, etc.
Then the total number of pairs is $N_{P}=N_{S}+N_{C}$.

The Combinatoric Background Sum - Mixed Run

The remaining three terms can be treated the same way as in the normal run.

$$
\begin{aligned}
& N_{C}^{\prime}=\sum_{\omega=0}^{\omega_{\max }} \sum_{i=1}^{N_{\omega}}\left(s_{i}^{+} b_{i+1}^{-}+b_{i}^{+} s_{i+1}^{-}+b_{i}^{+} b_{i+1}^{-}\right) \\
& =\sum_{\omega=0}^{\omega_{\max }} N_{\omega}\left[\left\langle s^{+} b^{-}\right\rangle_{\omega}+\left\langle b^{+} s^{-}\right\rangle_{\omega}+\left\langle b^{+} b^{-}\right\rangle_{\omega}\right]
\end{aligned}
$$

The sums N_{C} (from the normal run) and N_{C}^{\prime} (from the mixed run) are only equal in the limit of very large statistics. With limited statistics, they will be equal within uncertainties.

Mixing Method: GMC Embedding Check

Mixing Method: GMC Embedding Check

J / ψ Spin Alignment

- J / ψ is a vector meson with non-zero mass, there are three possible values of J_{z};

■ ± 1 : "Transverse" and 0: "Longitudinal"

- Study of the angular asymmetries of the decay products can give information on the alignment of mother particle

$$
\frac{d N}{d \cos \theta d \phi} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\nu \sin ^{2} \theta \cos 2 \phi
$$

- $\lambda=-1$; Longitudinal and $\lambda=1$; Transverse
- Analysis Goal: Measure the angular decay coefficients of $J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)$from $120 \mathrm{GeV} p$ - Fe interaction at SeaQuest.
- First measurement of μ and ν for proton induced fixed target experiment (already measured in pion induced fixed target experiment and collision experiments)

